Fuel Pump Trigger

Let’s talk about fuel pump triggers.  In a previous post, we talked about wiring the fuel pump to the POWERCELL output.  In this post, we’re going to talk about how to connect the MASTERCELL input to the fuel pump trigger. We’re getting towards the end of our customer’s install of our 20-Circuit Kit into their 1967 Mustang.  In previous posts, we’ve shown how to mount the MASTERCELL, POWERCELL and primary fuses.  We’ve shown how to run the primary power cables and the CAN cable that connects the cells together.  We’ve gone step-by-step through the process of connecting the POWERCELL outputs to the lights, fans, ECU, starter solenoid, fuel pump and other switched loads.  We’ve shown how to connect your MASTERCELL inputs to the different switches in the car.

It’s time to wire the fuel pump trigger.   Remember how the Infinitybox system works, your loads (lights, fans, pumps, ECU, starter solenoid and other switched functions) get their switched power from the POWERCELLs.  You place the POWERCELLs locally in the car where  you need them.  You connect your switches to the MASTERCELL, which is usually under the dash.  The MASTERCELL connects to the POWERCELLs through a thin data cable.  When you turn on a switch, the MASTERCELL sends a command to one of the POWERCELLs to turn on an output.

In the case of the fuel pump, there is a dedicated output on the rear POWERCELL.  In the case of this 1967 Mustang Kit, this is the tan wire on the POWERCELL A output harness.  That is output 10.  The input wire to the MASTERCELL is number 19.  This is the tan wire with the yellow tracer wire on the MASTERCELL B input harness.  Check your configuration sheet for the specifics on the POWERCELL output wire and the MASTERCELL input wire.

When you ground the MASTERCELL input wire for the fuel pump, the MASTERCELL sends a command to the rear POWERCELL to turn on 12-volts on output 10.  This provides the switched battery power to the fuel pump.  When you disconnect the MASTERCELL input wire from ground, the POWERCELL turns off the output for the fuel pump.

Our customers have many different ways that they want to control their fuel pump.  The easiest is to trigger it with the ignition switch.  To do this, simply connect the fuel pump input wire to the ignition terminal on the key switch.  This wire is would be wired to the same terminal as the MASTERCELL input for ignition.  When the key is in the run position, the inputs for both the ignition and fuel pump would be connected to ground.  The MASTERCELL would tell the front POWERCELL to turn on the ignition output and tell the rear POWERCELL to turn on the fuel pump output.

Another way to do this is to have a separate switch for the fuel pump.  Most race cars have this.  A lot of guys will wire their cars this way because it is easier to work on the car plus it gets you an extra level of security.  Unless you know to flip the fuel pump switch, the car won’t start.  You’d wire a separate fuel pump switch no differently than any other switch to the MASTERCELL.  The MASTERCELL input wire would connect to a normally open terminal on the switch.  The other side of the switch would connect to ground.  Turning on the switch connects the MASTERCELL input to ground, which turns on the fuel pump output on the rear POWERCELL.

Another option for controlling your fuel pump is to connect the MASTERCELL input to your ECU.  Most engine management and EFI systems have an output that triggers the fuel pump.  You can connect this wire from the EFI system to the MASTERCELL to have the ECU tell the Infinitybox system when the pump should be on or off.

There is an important warning that you must watch here.  Remember that the MASTERCELL inputs are designed to be connected to ground.  Applying battery voltage to the inputs may damage them and void the warranty.  Carefully read the manual that came with your EFI system to understand how their fuel pump trigger is set up.  They will usually be identified as either a positive or negative trigger.

If the fuel pump trigger is negative, you can connect that to the MASTERCELL input wire.  We strongly recommend soldering a 1N4001 diode in between the MASTERCELL input wire and the EFI system trigger wire for the fuel pump.  This isolates the MASTERCELL from the EFI system.  Diodes are directional parts so you must wire them with the cathode side facing towards the ECU.  That is the side of the diode that has the stripe on it.  This picture shows an example of the FAST EZ-EFI system and how to wire the diode into the fuel pump trigger.

Picture of wiring diagram showing how to wire the FAST EZ-EFI fuel injection system with the Infinitybox system.

Picture of wiring diagram showing how to wire the FAST EZ-EFI fuel injection system with the Infinitybox system.

If your EFI system has a positive trigger for the fuel pump, you must convert this positive signal to a negative signal.  The easiest way to do this is to use one of our inVERT Mini’s.  This is a small converter that is loomed in the harness.  It so small, you hardly notice that it is there.  This link will take you to more information on the inVERT Mini.  Another option to flip the fuel pump trigger to a ground trigger is to use a relay.  This link will take you to a diagram showing how to use a typical automotive relay to flip a positive trigger to a negative trigger.

In the case of our customer’s 1967 Mustang, they are using the Ford Coyote crate engine.  That has a positive fuel pump trigger.  They chose to use an inVERT Mini to flip the positive signal from the ECU to a ground trigger to the MASTERCELL.  This picture shows the wiring diagram for the Coyote ECU and how the inVERT Mini is wired into the harness.

Image of wiring diagram showing how to wire the Ford Coyote ECU with the Infinitybox 20-Circuit Kit

Image of wiring diagram showing how to wire the Ford Coyote ECU with the Infinitybox 20-Circuit Kit

You can download a PDF of this Coyote wiring diagram by clicking this link.

Click on this link to contact our team with any questions about wiring your car with our Infinitybox system.  

Example of a typical radiator temperature switch

Cooling Fan Switch

The next step in our 1967 Mustang wiring process is to wire the cooling fan switch.  There are a few different ways to do this depending on how you have your car set up.  In a previous post, we talked about wiring the cooling fans to the POWERCELL output.  This link will take you to that post.  In this post, we are going to talk about wiring the MASTERCELL input wire to trigger the fans.

Remember how our system works.  The switches connect to the MASTERCELL.  The loads connect to the POWERCELL.  There is never a direct connection between the switch and the thing that you are switching.  All of that is controlled inside the Infinitybox system.

The most common way to wire the cooling fan switch is to use a temperature switch.  This is usually threaded into the radiator.  When the coolant temperature exceeds a set point, the switch triggers the cooling fans.

Inside the temperature switch, there is a bi-metal switch that is set for a specific temperature.  Typical temperature set points are 180 F, 185 F and 190 F.  When the coolant temperature hits this point, the bi-metal element in the switch flips.  There are two main different types of temperature switches.  The most common has a single terminal on it.  This picture shows a common 1-terminal temperature switch.

Example of a typical radiator temperature switch

Example of a typical radiator temperature switch

If you have this type of switch, you are going to connect your MASTERCELL input wire to the quick-disconnect terminal on the switch.  The switch grounds to the chassis through its metal body.  When the temperature exceeds its set point, the switch closes internally which connects the quick-disconnect terminal to ground.  This triggers the MASTERCELL input, which sends a command to the front POWERCELL to turn on the cooling fan output.  When the coolant temperature drops below the set point, the switch opens internally.  This disconnects the MASTERCELL input from ground.  The MASTERCELL sees this change and sends a command to the front POWERCELL to turn off the cooling fan output.

Other temperature switches have two terminals.  This picture shows a good example.

Example of a two-terminal temperature switch

Example of a two-terminal temperature switch

In this case, both of the terminals are isolated from the metal body of the switch.  You connect your MASTERCELL input to one of the terminals and connect the other terminal to ground.  There is no polarity to this switch so you can use either terminal for the MASTERCELL input connection.  Outside of that, this switch works the same way as the single terminal switch.  When the coolant temperature exceeds its set point, the switch closes internally which electrically connects the two terminals together.  This connects the MASTERCELL input to ground.

This picture shows you generically how to wire a temperature switch to your MASTERCELL input.

Image of wiring diagram showing how to wire a thermostatic cooling fan switch to the Infinitybox MASTERCELL

Image of wiring diagram showing how to wire a thermostatic cooling fan switch to the Infinitybox MASTERCELL

Here is an important note about temperature switches and temperature senders.  There is a big difference between them.  The temperature switch turns on and off at a set temperature.  The temperature sender is what controls your temperature gauge.  You cannot connect your cooling fan input from the MASTERCELL to your temperature sender.

You can also use your ECU to trigger your cooling fan input if it has that capability.  The important thing to understand is whether the ECU trigger is a ground trigger or a positive trigger.  The manual for the ECU will get you more information.  You need to wire these differently if they are ground or positive triggers.  This picture will show you how to wire these two different types of triggers.

Image of wiring diagram showing how to wire the cooling fan trigger from an ECU to the Infinitybox MASTERCELL

Image of wiring diagram showing how to wire the cooling fan trigger from an ECU to the Infinitybox MASTERCELL

If the ECU has a ground trigger for the cooling fan, we recommend installing a diode to buffer the MASTERCELL from the ECU.  If it is a positive trigger, you must use a relay or an inVERT Mini to flip the signal to a ground trigger.  See the picture above for more details.

Our customer is using the Ford Coyote crate engine in this 1967 Mustang.  The Ford ECU has a temperature sender that measures the coolant temperature.  Based on this temperature, the ECU has an output that is designed to trigger a cooling fan.  We have a dedicated wiring diagram on our website that shows you exactly how to wire the cooling fan trigger to the Coyote ECU.  You can download the wiring diagram for the Coyote ECU by clicking this link.  The Coyote ECU has a positive cooling fan trigger.  You must use an inVERT Mini to flip this signal.  The wiring diagram shows you how to do that.

The resources section of our website has wiring diagrams for many different ECUs.  These will show you how to wire the cooling fan trigger from the ECU to your MASTERCELL.

Click on this link to contact our team with any questions about wiring your cooling fan switch.

 

 

Back-Up Lights

The back-up lights are the next thing to wire in our customer’s 1967 Mustang project.  We’re getting to the end of the switches that we need to wire to the MASTERCELL.

If you look at your configuration sheet, you will not see a dedicated output for back-up lights.  Depending on the vintage of the car and the manufacturer, there may or may not be back-up lights on the car.  We don’t dedicate an output to this but you can use any of the OPEN outputs on your rear POWERCELL.

This link will take you to the configuration sheet for the system that we are installing in this 1967 Mustang.  This link will take you to our previous post in this series going through the details of the configuration sheet.  You will see that there are several outputs that are labeled as OPEN on the configuration sheet.  Depending on the version, you may have 4 to 6 OPEN outputs.  OPEN means that there is no specific function assigned to the output.  These can be used as generic outputs.  You will note that the personality for these outputs is TRACK.  That means that the output will track the switch.  When the switch is on, the output is on.  When the switch is off, the output is off.  You can use OPEN outputs for things like amp triggers, extra lights, transmission cooler fans, secondary fuel pumps and back-up lights.

Output 5 on the rear POWERCELL is OPEN.  This is the white wire coming from the B harness.  The MASTERCELL input is the white wire with the red wire.  This is input 2 on the MASTERCELL A input harness.

We previously connected the white wire from the rear POWERCELL to the back-up lights in the rear of the car.  The customer is using the tail light assembly from Mustang Projects.  You can read about that in this blog post.  The white wire connects to the tail light assembly.  Then the assembly needs to get connected to ground.  Follow the instructions that came with your back-up lights for the exact wire colors.

Next, the MASTERCELL input wire needs to connect to a switch that closes when the transmission is in the reverse position.  Our customer is using a Ford AOD transmission in this car.  There is a dedicated connector on the driver’s side of the transmission.  We connected to this connector in a previous post for the neutral-safety signal.  We are going to connect to the same connector for the reverse signal.

Sketch of the Reverse/Neutral Safety Switch Connector on a Ford AOD Transmission

Sketch of the Reverse/Neutral Safety Switch Connector on a Ford AOD Transmission

This diagram will show you which terminals on the Ford AOD transmission you need to connect to ground and to the MASTERCELL input harness.

Wiring diagram for Reverse/Neutral Safety switch on Ford AOD transmission

Wiring diagram for Reverse/Neutral Safety switch on Ford AOD transmission

Terminal 1 on the transmission connector needs to get connected to ground.  Terminal 2 needs to connect to the MASTERCELL input for the back-up lights.  In our case, this is the white wire with the red tracer on the MASTERCELL A input harness.  This link will take you to a PDF of this document.

When the transmission is in the reverse position, the switch makes a connection between terminals 1 and 2.  This connects the MASTERCELL input to ground.  When the MASTERCELL sees the input connect to ground, it sends a signal to the POWERCELL in the rear of the car to turn on the output that we have chosen for the back-up lights.  When the transmission is taken out of reverse, the switch opens which disconnects the MASTERCELL input from ground.  The MASTERCELL sees this change and sends a command to the POWERCELL to turn off the output that we have chosen for the back-up lights.

Most transmissions will have a set of contacts for a reverse switch.  In other cases, there will be a switch in the shifter that will be made when the transmission is in the reverse position.  Check the literature that came with your transmission or your shifter.

That’s it.  Having a POWERCELL in the rear of the car makes wiring the back-up lights very easy.  There is no extra wire to run to the back of the car.  You are already using the existing POWERCELL to manage this.

Please contact our team with any questions about wiring with our Infinitybox system.  You can contact a member of our technical support team by clicking this link.

Sketch of the Reverse/Neutral Safety Switch Connector on a Ford AOD Transmission

Neutral Safety

A lot of people have seen a video from one of our customers starting his car remotely with an iPad.  His iPad is connected to the inTOUCH NET module in his car.  This lets him control everything including lights, windows, heat & A/C and locks.  It also lets him start the car.  Starting a car remotely can be very dangerous.  If the car is started with the transmission in gear, it can launch the car forward potentially injuring, maiming or killing someone.  In our Infinitybox system, there is a neutral safety switch input that must be wired before the engine will start.  This is true for starting it with a keyed switch, our one-button start or remotely from inTOUCH NET.

Some people call these park-safety switches, clutch interlock switches or neutral safety switches.  Regardless of what you call them, they are used to detect if it is safe to turn the starter.  They either detect that the transmission is in park, the transmission is in neutral, the clutch pedal is depressed or your foot is on the brake.  This is a standard input on all of our systems that must be wired correctly for the starter output to turn on.

The neutral safety input works like any other MASTERCELL input.  It must be connected to ground to work.  When you try to start the car, the MASTERCELL checks the state of the neutral safety input.  If it is not grounded, the MASTERCELL will not let the POWERCELL turn on the starter output.  The MASTERCELL must also see the neutral safety input change periodically.  If the input is tied directly to ground or if the switch fails, it will not let the starter crank.

All safety switches essentially work the same way.  If there is continuity through the switch then it is safe to start the engine.  Most transmissions have switches built into them that close when it is in neutral or park.  That is the case for our customer’s 1967 Mustang.  They are using a Ford AOD transmission with the built in switch.  In other cases, you may have a switch on your clutch pedal.  When you press the clutch, this closes the switch.  You wire the MASTERCELL input to one side of the switch and ground the other side.  You can also have a switch built into your shifter.  This switch is closed when the selector is in the park or neutral position.

If your car has none of the options above, you can wire your neutral safety input from the MASTERCELL to the brake pedal switch in parallel with your brake light input.  When you step on the pedal, the MASTERCELL will see both the brake light input and the neutral safety input.  The brake lights will turn on and the MASTERCELL will allow the starter to crank.  You simply connect both MASTERCELL inputs to the same terminal on the brake pedal switch.  This diagram will show you how to do this.

Image of wiring diagram showing how to use your brake pedal as a neutral safety switch

Image of wiring diagram showing how to use your brake pedal as a neutral safety switch

Going back to the Ford AOD transmission, there is a connector on the transmission for both the neutral safety and the reverse lights.  We’ll talk about reverse lights in an upcoming post.  This picture shows how to wire the MASTERCELL input for the neutral safety to the connector on the transmission.

Wiring diagram for Reverse/Neutral Safety switch on Ford AOD transmission

Wiring diagram for Reverse/Neutral Safety switch on Ford AOD transmission

The neutral safety input from the MASTERCELL will connect to Terminal 2 on the connector.  Terminal 1 will connect to ground.  See our warnings in previous posts about good ground connections.  When the transmission is in park or neutral, the switch closes.  This connects the MASTERCELL input to ground.  You can download a PDF of this wiring diagram by clicking this link.

Starting issues related to the neutral safety switch are probably our number 1 technical support call.  Most guys just don’t read this in the manual.  Your call will not start unless you have this MASTERCELL input wired properly.  Please click on this link to contact our technical support team with questions.

Ignition and Starter

Here’s the next step in wiring this 1967 Mustang.  In previous posts, we described wiring the ignition and starter outputs from the front POWERCELL.  You can get the Ignition output post at this link.  This link will take you to the starter output post.  In this post, we are going to describe the process of wiring the ignition and starter switch to the MASTERCELL inputs.

Our customer is using a steering column from IDIDIT for this Mustang.  They chose the option to have the keyed ignition and starter switch built into the column.  When you order this option from IDIDIT, you get a separate harness to connect from the column.  This link will take you to the instructions for this switch from IDIDIT.  Essentially, there are 4 wires in this harness.  These will connect to the MASTERCELL input wires.

Remember how our MASTERCELL inputs work.  You connect the input wire to one side of your switch.  The other side of the switch connects to ground.  When you turn the switch on, the MASTERCELL input gets connected to ground.  The MASTERCELL sees the input go to ground and sends a command to one of the POWERCELLs to do something.  In most cases when you are wiring OEM switches to a MASTERCELL, you will ground the battery feed and connect the input wires correspondingly.  This IDIDIT switch is no exception.

Here’s what you are going to do with the 4 wires in the switch harness.

First, you are going to connect the red wire to ground.  You can use any of the black wires in the MASTERCELL input harness or you can connect this directly to the chassis.  We’ve said this over and over, make sure that you have a good metal-to-metal connection between the ground wire and the chassis.  No paint, powder coating, rust, oil, grease, etc.  You want a good clean connection.

Next, you are going to connect the purple wire in the IDIDIT harness to the MASTERCELL input wire for the starter.  Check your configuration sheet.  Different configurations may have different wire colors for the starter.  In our configuration, the starter input wire is the white wire with the yellow tracer on the MASTERCELL A harness.  This is input number 4.  You can crimp, splice, solder or use connectors to make this connection.  See our earlier blog posts about connection techniques.

Next, connect the pink wire in the IDIDIT harness to the MASTERCELL input wire for the Ignition.  Same warning as above.  Check your configuration sheet for the exact wire color.  In our configuration, this is the white wire with the blue tracer on the MASTERCELL A harness.  That is input 3.

You will notice that this ignition and starter switch has an accessory position.  Some customers will use the accessory position on their switch to control an output that is different from their ignition output.  They may want to have their stereo on without having their ignition on.  In most configurations, there is an OPEN output on the front POWERCELL designed for this accessory function.  In our configuration, this is output 8.  It is controlled by input 8 on the MASTERCELL A connector.  That is the blue wire with the light-blue tracer.  We’re going to connect this wire to the brown wire in the IDIDIT harness.

Here’s how the different positions on the switch work.  When the key is in the accessory position, your accessory output on your POWERCELL will be on.  In the ignition or ON position, the ignition output will turn on.  So will the accessory output.  When you turn the key to the start position, the accessory will turn off.  The ignition will remain on and the starter output will turn on.

That’s all that it takes to connect the IDIDIT ignition and starter switch to the MASTERCELL in this 1967 Mustang.  We have a large collection of different ignition and starter switch wiring diagrams in our reference library on our website.  Click this link to get there.

Contact us if you have questions about wiring your ignition and starter switch to your 20-Circuit Kit.  Click on this link to contact one of our technical support engineers.

Picture of a torque converter

Torque Converter

We just got a great question from a customer.  He has his 1972 Chevy truck wired with our 20-Circuit Harness Kit.  He has a LS3 engine using the GM ECU to control the engine.  The ECU is also managing the torque converter lock-up.  Additionally, he has an aftermarket cruise control system.  Both the torque converter and the cruise control system need a +12 volt signal when you step on the brake pedal.  Our customer wanted to know the easiest way to get this.

One of the advantages of our Infinitybox system is how we connect to your switches.  Our inputs are very low-current and just require a ground signal to turn on an input.  This means that you can run very light-gauge wires to your switches.  It also means, that there is no high-current at the switch, which is safer.  Since there is no power at the switch, some guys get confused on how to get 12-volt outputs for things like their torque converter and cruise control systems.  This is much easier than it looks.

The ECU or a separate transmission controller is going to control the lock-up solenoid in the torque converter.  In higher gears or at specific speeds, the torque converter locks up to improve fuel economy.  The ECU or the transmission controller needs a signal to know when you have stepped on the brake so that it will disengage this lock up.

The same thing needs to happen for the cruise control.  The cruise control system needs to know when you have stepped on the brake pedal so that it can disengage.

Remember that there is no battery power at the brake pedal switch.  You could splice off of the brake pedal output on the rear POWERCELL to get this 12-volt signal for the torque converter and cruise control systems.  However, you’d have to run a wire from the back of the car all the way to the front.  That goes against one of the basic benefits of our system.

The easiest way to get a +12 volt signal to the torque converter and cruise control systems is to use one of the OPEN outputs on the front POWERCELL.  In most systems, output 8 is OPEN.  This is the dark-green wire on the output A harness.  An OPEN output means that there is no specific function assigned to it.  These can be used generically as auxiliary outputs.  Connect the OPEN output wire to the ECU and the cruise control systems.  Follow their respective wiring diagrams to know where to make these connections.

Take the MASTERCELL input and connect it to the brake pedal switch in the same way that you have wired your brake pedal input.  You can have multiple MASTERCELL input wires connected together to one switch.  Follow your configuration sheet to get the right MASTERCELL input wire color.  In the case of output 8 on the front POWERCELL, this is input 8 which is the blue wire with the light-blue stripe on the MASTERCELL A harness.

When you step on your brake pedal, the MASTERCELL will see two inputs ground together: one for the brake lights and one for the OPEN output on the front POWERCELL.  The brake lights will turn on in the back of the car.  You will also get +12 volts on the OPEN output on the front POWERCELL.  This will send a signal to unlock the torque converter and to disengage the cruise control.  When you take your foot off of the brake pedal. the MASTERCELL sees the two inputs turn off.  It will send the command to the rear POWERCELL to turn off the brake lights and a command to the front POWERCELL to turn off the OPEN output.

The torque converter and cruise control systems will get their brake pedal signal from the local POWERCELL in the front of the car.  This keeps the total amount of wire running through the car to a minimum.

Please contact our team with questions on this post or on any other topics related to wiring your car with our Infinitybox system.  Click on this link to get connected to a member of our technical support team.

High-Beam Switch

We have the turn-signal switches, horn switch and 4-way switch wired to the IDIDIT steering column in this 1967 wiring project.  Our next step is to wire the high-beam switch.

You have several options to wire your high-beam switch.  The high-beams work just like any other output in the Infinitybox system.  There is a dedicated output on the front POWERCELL that is for the high-beams.  This output gets wired to both of the high-beam bulbs in the front of the car.  The other side of the bulbs connects to ground.

The MASTERCELL connects to the high-beam switch.  When the MASTERCELL input is grounded though the switch, the MASTERCELL sends a command to the front POWERCELL to turn on the high-beams.  Your high-beam switch can be a toggle switch on the dash, a motion on the turn signal stalk or even a push button on the floor.

In the case of this 1967 Mustang install, the customer chose to use our Alternating Headlight Toggle Option that is built into the 20-Circuit Kit.  Here’s how this works.  You connect the Alternating Headlight Toggle input in the MASTERCELL harness to one contact on a momentary button.  You ground the other side of the button.  When you press the button, you connect the MASTERCELL input to ground.

If you press and hold the momentary button with the headlights off, the MASTERCELL will tell the front POWERCELL to turn on the high-beams.  The high-beams will stay on as long as your finger is holding the button.  When you release the button, the high-beams will turn off.  You would use this as your flash-to-pass button.

If you press and release the momentary button with the headlights on, the MASTERCELL will tell the front POWERCELL to toggle between the headlights and high-beams.  It will turn the headlights off then turn the high-beams on.  If you press and release the momentary button again, the MASTERCELL will tell the front POWERCELL to turn the high-beams off and turn on the headlights.  This is a very simple and cool feature.

Our customer chose the Tilt Lever Momentary Switch 510168 option with their steering column.  This gives them a momentary button at the end of the turn-signal stalk.  This is a perfect way to control your high-beams.  Pressing the button with the headlights off gets you flash-to-pass.  Pressing and releasing the button with the headlights on, will control your high-beams.

IDIDIT has some very specific instructions for installing this Tilt Lever Momentary Switch to the column.  You can link to these instructions at this link.  The grey wire going to the momentary switch will connect to the Alternating Headlight Toggle input going to the MASTERCELL.  In our configuration, this is the green-red wire on the MASTERCELL A harness.  That is input 22.  Please refer to your configuration sheet since different configurations may have different wire assignments.

IDIDIT makes some good points in their instructions about grounding the tilt lever.  Be sure to follow their instructions carefully for installing this option.

Please contact us with questions about wiring your high-beam switch to our Infinitybox MASTERCELL.  Click this link to get in contact with a member of our technical support team.

Example of an IDIDIT steering column with turn signal stalk.

Steering Column

Let’s get to the steering column wiring.  This is the next installment the process of wiring our 20-Circuit Kit into a 1967 Mustang.  One of our customers sent us a great series of pictures showing their process of wiring their car.  It’s time to talk about turn-signal switches, horn switches and 4-way switches.

Our customer is using a steering column kit from IDIDIT.  The one they chose is for the 1967 to 1969 Mustang.  It is a tilt-style column designed for the shifter on the floor.  They choose the option to have the GM steering column connector on the harness.  This column also has the Tilt Lever Momentary Switch 510168 option.  We are going to use that to control the high-beams and will discuss that in the next blog post.  It also has the ignition key built into it.  We’ll talk about wiring that in future posts too.

The steering column in the car does a few obvious things.  It holds the steering wheel and lets you turn the car.  It also holds the switches for the turn-signals, the horn and the 4-way flasher.  All of those switches will wire to the inputs on your MASTERCELL.  The MASTERCELL will send commands to the different POWERCELLs in the car to turn lights on and off plus sound the horn.  Wiring the switches to the MASTERCELL is really easy.  There is a diagram on our website that shows how to do this.  You can see it here.

Image of wiring diagram showing how to connect MASTERCELL inputs to a GM-Style Steering Column Connector

Image of wiring diagram showing how to connect MASTERCELL inputs to a GM-Style Steering Column Connector

Note that most steering column manufacturers use the GM-style turn-signal switch.  These have been used in cars for years with very few changes.  Companies like IDIDIT and Flaming River use this exact same column switch.  The diagram above will work for any of these columns.

The wires colors for the steering column connector are shown on the left side of the wiring diagram above.  We also show the details of the connector.  Almost all of the wires in the column connector need to connect to MASTERCELL input wires.  The two that are unused are the yellow and green wires on the column connector.  Check the configuration sheet that came with your kit.  You want to match the wire function to the wires on the right of the diagram, not necessarily the wire color.  Wire colors may vary from different kits.  Always use your configuration sheet for the right wire colors.

The black wire on the column connector needs to connect to your MASTERCELL horn input wire.  In our configuration this is the blue wire with the yellow tracer on the A input harness.  This is input number 9.

The light blue wire on the column connector needs to connect to your MASTERCELL input for the left turn signal.  We’re using the inputs for mechanical steering column.  In our configuration this is the yellow wire with the black tracer on the A input harness.  This is input 11.

The dark blue wire on the column connector needs to connect to your MASTERCELL input for the right turn signal.  We’re using the inputs for mechanical steering column.  In our configuration this is the yellow wire with the red tracer on the A input harness.  This is input 12.

The brown wire on the column connector needs to connect to your MASTERCELL input for the 4-way slashers.  In our configuration this is the yellow wire with the blue tracer on the A input harness.  This is input 13.

Lastly, the purple and white wires on the column connector needs to be connected to ground.  You can use the black wires in the MASTERCELL harness as a ground reference.  Otherwise, you can connect these wires to the chassis at the column.

One more comment, you need to properly ground the column to the chassis.  Otherwise, you will have problems with your horn switch.  In most cases, the column will ground to the frame of the car through its mounts but you will not get a good ground if you have the column shaft painted or powder coated.  The same is true if you have a fiberglass body.  Run a ground wire from a stationary point on the column to the frame of the car.  Make sure that you have a metal-to-metal connection between your ground wire and the points where they connect to the column and the chassis.

You can splice the MASTERCELL input wires directly to the wires on the steering column connector.  Alternately, IDIDIT sells a connector kit with the terminals included to crimp onto the MASTERCELL input wires.  Using this connector makes it very easy to maintain and service your column in the future.

That’s about it for wiring the turn-signal switches, the 4-way switch and the horn switch.  This connection to your MASTERCELL is simple and easy.  You can download a PDF copy of the MASTERCELL input wiring diagram by clicking this link.

You can contact a member of our team with questions by clicking this link and filling out our contact form.  Stay tuned for more updates on the wiring of this 1967 Mustang.

 

Picture of a headlight switch manufactured by Standard Motor Products

Headlight Switch

It’s time to wire in the headlight switch in our customer’s 1967 Mustang.  They are installing our 20-Circuit Kit in the car.  In previous posts, we blogged about wiring the headlights and parking lights to the outputs on the POWERCELLs in the car.  You can read about that process at this link.

Remember that there is no direct connection between your switches and the things that you are switching.  In this case, there is no direct connection between the headlight switch and the headlight bulbs in the front of the car.  The headlight switch connects to the MASTERCELL.  The headlight bulbs connect to the POWERCELL.  The MASTERCELL and POWERCELLs are connected with our CAN data cable.  When you turn on the headlight switch, the MASTERCELL sees the switch turn on.  It sends a command to the POWERCELL in the front of the car and commands it to turn the output on that powers the headlight bulbs.  The same thing happens when you turn on your parking lights.  The MASTERCELL sees the parking light switch turn on.  It sends a command to the POWERCELLs in the front and rear of the car.  Each of these POWERCELLs turn on parking light outputs locally in the car.

Our customer started with the original headlight switch that came with the car.  After some checking and testing of the switch, they figured out that the switch was bad.  Something inside the switch failed.

Picture showing how to use a multimeter to check continuity between terminals on a headlight switch

Picture showing how to use a multimeter to check continuity between terminals on a headlight switch

They wanted to keep the traditional pull-type headlight switch in the car so they picked up a replacement switch made by Standard Motor Products.  This what the switch looks like.

Picture of a headlight switch manufactured by Standard Motor Products

Picture of a headlight switch manufactured by Standard Motor Products

This is a multi-function switch.  It controls the parking and headlights in the car.  You get the parking lights when you pull the switch to the first detent.  You get both the parking lights and headlights when you pull the switch to the second position.

This is a very common switch, used in lots of different cars.  We created a specific wiring diagram showing how to wire your MASTERCELL inputs to the terminals on the switch.  This picture shows you the diagram.

Picture of a wiring diagram for a typical headlight switch

Picture of a wiring diagram for a typical headlight switch

You can download a PDF of this diagram by clicking this link.

The first thing that we did was to check the configuration sheet for this system.  You can get more details on the configuration sheet for your system by clicking this link.  The MASTERCELL inputs for the headlights and parking lights are going to connect to the switch.  The headlight input is the white wire with the green tracer.  The parking light input is the blue wire with the black tracer.  Both of these inputs are on the MASTERCELL input harness.  You also need three ground connections to this switch.  Two of the terminals need to be grounded and the switch housing needs to be connected to ground.  You can use the black wires that came in the MASTERCELL input harness as grounds for this switch.  One of the MASTERCELL ground wires can handle the ground for the entire switch.  Just jumper that black wire between the different terminals on the switch and the case.

Follow the diagram to see which terminals on the headlight switch connect to the headlight and parking light input wires on the MASTERCELL.  This is pretty simple.

Once you have the input wires connected and the grounds connected, you have wired the inputs for the headlights and parking lights.  When you pull the switch to the first position, the switch connects the parking light input wire to ground.  This sends the signal to the MASTERCELL to control the lights through the front and rear POWERCELLs.  When you pull the switch to the second position, the switch connects the headlight input to ground.  This triggers the MASTERCELL to control the headlights from the front POWERCELL.  When the switch is in the headlight position, the switch also keeps the parking light input connected to ground.

Once you have the headlight and parking light inputs wired, you can also use this switch to control and dim your dash lights.  This specific switch has a rheostat built in to dim dash lights.  In most cases, you are powering your dash lights off of your parking light output.  See this blog post for more details.  You will have power to your dash lights when the parking lights or headlights are on from this switch.

This switch has a rheostat built in to dim the dash lights.  A rheostat is a variable resistor.  Turning the knob, increases or decreases the resistance in series with the dash lights.  This lets more or less current flow to the dash lights, which will dim or brighten them.  Please note that the dimming effect may not be as significant when using LED dash lights.

You can wire the dash light feed though the rheostat on the headlight switch.  See the wiring diagram above for the details of which terminals need to connect to the wires.  Please note that there is a metal jumper that must be cut to do this.  If you do not remove this metal jumper, you will damage your MASTERCELL inputs and potentially void the warranty.

That’s it.  This one post covers wiring  your parking light input, your headlight and your dash lights.  Please click this link to contact our team with any questions about our Infinitybox system.

Switch Terminals

We’re progressing through the different switches that need to get wired to the MASTERCELL in our customer’s 1967 Mustang.  They are wiring their car with our 20-Circuit Kit.  The last post covered the brake pedal switch, which is one of the easiest.  In this post, we’re going to talk about how you figure out which switch terminals you need to connect to your MASTERCELL inputs.

Some switches are really easy, the brake pedal switch is an example.  Others, we have created wiring diagrams for you to use.  Our Resources section of our website has a long list of turn signal switches, ignition switches and headlight switches from different makes of car.  You can find these under the Installation Guides section at this link.  

There are some switches that are unique to a model year or are unique to a specific car.  We may not have a wiring diagram assembled for your specific switch.  It is usually pretty simple to figure out how to connect these switches to your MASTERCELL inputs.  We’ll talk about the basics in this blog post.

Remember how a MASTERCELL input works.  The MASTERCELL input gets triggered by getting connected to ground through the switch.  In the case of the brake switch from our last post, that one was easy.  One of the switch terminals connected to the MASTERCELL input.  The other of the switch terminals connected to ground.

There are a few simple steps to follow to figure out which switch terminals you need to connect to for a new switch.

The first step is to find out where power came into the switch originally.  Let’s use this switch as an example.  One of our customers is wiring a 1972 Chevy truck with our 20-Circuit Kit.  He sent us this picture of his ignition switch.

Picture of a typical Chevy truck ignition switch.

Picture of a typical Chevy truck ignition switch.

He didn’t know how to connect his MASTERCELL inputs to the switch terminals on the switch. If you look at the terminals on the switch, there are two labeled BAT.  These are in the lower right corner of the picture.  In most cases, BAT is where the battery originally connected to the switch.  Ignition switches usually have two separate battery feeds: a dedicated one for the starter solenoid and one for the ignition feed.

You will also see that there is a terminal labeled IGN and one for SOL.  At a first glance, you can assume that these are for the ignition power and starter solenoid feeds.

You are looking for terminals that have continuity between them when the switch is on.  In the case of this ignition switch, you need to find the terminals that have continuity when the switch is in the run position for the ignition input.  You also have to find the pair that have continuity in the start position for the starter input.

If you can, search the internet to see if you can find wiring diagrams for that specific switch.  We’re always surprised to find that there is a forum or chat group for practically any type of car out there.  Someone has worked on that switch before you and they have posted some wiring diagrams.

Once you have identified the terminals on the switch, get a multi-meter and check continuity between the terminals.  If you don’t already have one, a good multi-meter is a powerful tool to have in the shop.  The two most critical things that you have to measure would be voltage and resistance.  Here is a simple meter that you can source from Waytek Wire.  Here is an example of a meter from Del City.

Picture showing how to use a multimeter to check continuity between terminals on a headlight switch

Picture showing how to use a multimeter to check continuity between terminals on a headlight switch

To figure out our switch terminals, we want to measure continuity or resistance.  If a circuit has continuity, it should have low resistance between the terminals.  Low should be less than 1 Ohm.  Look for the resistance setting on your meter.  On most meters, this is represented by the Greek letter Omega that looks like this: Ω.

Represents electrical resistance

Represents electrical resistance

Some meters have an auto-range function that will internally adjust to select the right range to measure resistance.  Others have a dial to select the range.  You want to set the range of your resistance measurement to the lowest range. To measure resistance, it really doesn’t matter if you have the red or black leads from the meter touching the different terminals.

Touch the test leads from your meter to the terminals with the switch in the off position.  You should measure very high resistance or no change in resistance.  In the case of this 1972 Chevy ignition switch, we were measuring between each of the BAT terminals and the IGN terminal with the switch off.  We repeated this by measuring between each of the BAT terminals and the SOL terminal.  We measured a resistance in the mega-ohm range.  Some meters will show this as “OL” or “overload”.

We then turned the switch to the ON position and measured between the BAT terminals and the IGN terminal.  We found that we had about 0.4 Ohms of resistance between the inner BAT terminal and the IGN terminal when the switch was in the ON position.  In the case of this switch, we will connect the MASTERCELL ignition input wire to the IGN terminal and connect one of the ground wires from the MASTERCELL input harness to the inner BAT terminal.  When the switch is in the ON position, there is continuity between IGN and the inner BAT terminal.  This will ground the MASTERCELL input, which will turn on the Ignition output on the POWERCELL.

We repeated this for the SOL terminal.  We measured between SOL and both of the BAT terminals when the switch was in the START position.  We found that the outer BAT terminal was connected to the SOL terminal in the start position.  We will connect the MASTERCELL input wire for the starter to the SOL terminal and connect one of the MASTERCELL ground wires to the outer BAT terminal.  When the key is in the START position, there is continuity between the SOL terminal and the outer BAT terminal.  This will ground the MASTERCELL input for the starter, which will turn on the starter output on the POWERCELL.

Just as a sanity check, we went back and measured resistance between the IGN terminal and the inner BAT terminal when the switch was in the START position.  When the switch is in the START position, you must still have continuity between the IGN terminal and its ground connection so that the engine will start.  The IGN terminal has continuity to its ground connection when the key is in the start position.

Figuring out how to wire your switch to  your MASTERCELL inputs can be scary.  We’ve built a large of list of different switches over the years but the steps above will help you to figure out any switch in your car.  Click on this link to contact our team with questions.