Routing the CAN Cable

Picture of the Infinitybox 3-Way CAN Cable

Picture of the Infinitybox 3-Way CAN Cable

Now it is time for routing the CAN cable through the 1967 Mustang.  As we’ve described before, our Infinitybox system is different from a traditional wiring harness.  We distribute switches and outputs throughout the car using our MASTERCELLs, POWERCELLs and inMOTION Cells.  Instead of running power through large wires from every switch to the outputs, we pass data through small wires.

Our system works using something called CAN.  That stands for Controller Area Network.  It is the vehicle bus standard that was created to allow different controllers to communicate on a common protocol.  You can read more about it by clicking this link.  CAN has been around since the early 1980’s and is used in all modern passenger cars and commercial trucks.

The OEM’s use this technology to reduce weight of harnesses, simplify wiring and get more functions that you could from just a simple relay.  Our Infinitybox system brings these exact features and benefits to anyone building a race car, restoring a vehicle or manufacturing commercial trucks.

Just because a system has CAN doesn’t necessarily mean that it can communicate with other CAN systems.  The term CAN is pretty generic.  It is the protocol that is the important part.  For our aftermarket systems, we use a proprietary protocol that follows the CAN 2.0b standard.  This lets us get much more control and features in our systems.  For our commercial vehicle systems, we use J1939.  This lets our hardware communicate with other J1939 peripherals and systems in the vehicle.

The CAN signals are passed between the MASTERCELL, POWERCELLs, inMOTION Cells and other modules through two wires in the CAN cable.  Once a second, the MASTERCELL sends a command out to all of the cells attached to the network to check in.  The blue heartbeat light on the cells is the confirmation that the cells are communicating.  When you step on your brake pedal, turn on your ignition or turn on any other switch connected to the system, the MASTERCELL instantaneously sends out a command on the CAN network to the target cell.  This signal is sent and received in a few milliseconds.

In the CAN cable, there are the two CAN wires.  There is also a red power wire and a black ground wire.  This is how the MASTERCELL gets is power and ground.  This link will take you to a separate blog post talking in more detail about the anatomy of a CAN cable.

If you have a 20-Circuit Harness Kit, you get a 3-way CAN cable.  This has a CAN plug on each end and one spliced about 1/3 of the way along the length of the cable.  In you have one of our 10-Circuit Harness Kits, you get a 2-way CAN cable.  This has a CAN plug on each end.

Our customer started at the back of the car.  They plugged the long end of the CAN cable into one of the CAN ports on the POWERCELL.  Both of these ports are identical so it doesn’t matter which you choose.  They ran the cable along the driver’s side of the car up to the MASTERCELL, through a channel under the door sill.  They plugged the CAN plug that is in the middle of the cable into the MASTERCELL then ran the short length to the front POWERCELL.

In your kit, there are two accessory plugs that are very important.  The both look like this.  Please note that the plugs in some kits may be yellow.  Others may be cream-colored.

Infinitybox CAN sealing plug

Infinitybox CAN sealing plug

There is a difference between the two plugs.  One is just a seal to plug the unused CAN port in your system.  This must be installed to keep dirt, debris, moisture and water from entering your cell.  The second is a CAN terminator.  It is marked with an “R” on the top.  This is also a seal to plug up an unused CAN port but it also does something important.  There is a resistor in the connector that balances the impedance of the CAN transmission line.  This terminating resistor must be plugged in to the cell that is on the longest length of CAN cable from the MASTERCELL.  You system will not work correctly without this terminating resistor.  In the case of our customer’s 1967 Mustang, the resistor is mounted in the rear POWERCELL.  This picture shows the CAN cable connected and the terminating resistor installed.

Picture of POWERCELL with CAN cable in 1967 Mustang wired with the Infinitybox system

Picture of POWERCELL with CAN cable in 1967 Mustang wired with the Infinitybox system

This picture shows the CAN cable connected to the MASTERCELL.

Picture of MASTERCELL installed in 1967 Mustang with CAN cable connected

Picture of MASTERCELL installed in 1967 Mustang with CAN cable connected

This leads to one of our favorite pictures ever.  Take a look at this.

Picture of power and CAN cables running to the back of a 1967 Mustang wired with Infinitybox

Picture of power and CAN cables running to the back of a 1967 Mustang wired with Infinitybox

This is the entire bundle of wire running from the back of the car to the front.  Yes, there is a separate starter cable running from the battery to the starter solenoid and there is fuel wire sender wire bundled in with the CAN cable.  Outside of that, the two 8-AWG power cables and the CAN cable are all you need to control everything in the back of the car.  This wire is run through the channel under the driver’s door sill.

There are a few more points to hit about the CAN cable.

First, a lot of customers ask if they can lengthen or shorten the CAN cables.  Depending on where you mount you cells, you may need different lengths.  The answer is “YES”.  This link will get you more details on CAN cable lengths.  We also get questions about custom, pre-made CAN cables.  We also do that.  Contact our sales team to discuss details.

Second, there are some considerations that you need to make when you run your CAN cables through the car.  The CAN protocol is very noise immune.  There are things that we do in hardware and in software to make sure that this is a very reliable signal.  That being said, you want to keep your CAN cables (and all of your other electronics in the car) away from the high-voltage coil wires for your ignition system.

Lastly, there is an addendum sheet that comes with any kit that uses the 3-way CAN cable.  The CAN cable provides power and ground to the MASTERCELL.  Depending on the way your car is assembled, there may be slight differences between the ground potential at the front POWERCELL and the rear POWERCELL.  These need to be isolated.  You must cut the red and black wires in the one of the lengths of your CAN cable.  Click on this link to view this addendum.

Click on this link to contact our team with questions or comments about this post.

 

 

Power Input Cables

Here’s the next step in wiring the 1967 Mustang with our Infinitybox system.  You need to run the power input cables from the Mega fuse holder and connect them to the POWERCELLs.  There are 4 power input cables included in your kit.  They look like this.

POWERCELL Battery Input Harness

POWERCELL Battery Input Harness

These cables have the mating connector that plugs into the circular 8-mm sockets on the POWERCELL.  These cables are 8-AWG and are jacketed in high-durability TXL insulation.  Each POWERCELL gets two of these cables.  This lets you supply a total of 120-Amps to the POWERCELL.

Remember how the POWERCELLs work.  They are mounted locally in the car.  Your functions like lights, fans, pumps, ignition and starter connect to the POWERCELL.  The MASTERCELL sends commands to this POWERCELL through the CAN cable to turn these function on and off.  In addition to the CAN cable that sends commands, the POWERCELL needs to get power from the battery for your switched functions.  These primary input cables supply the power to the POWERCELL.

For this process, make sure that you have disconnected the positive cable from the battery.  Plug the round connector on the end of each of the primary input cable into the POWERCELL and run the cable through the car.  All three of the round connector ports on the POWERCELL are the same.  You can pick any two of these to plug the cables into.

The other end of this cable needs to connect to the terminals on the Mega fuse holders installed earlier in this process.  Cut the cable to length, strip it and crimp on the 8-AWG 5/16″ ring terminals that are included with your 10 or 20-Circuit kit.  Make sure that you are using the right tool to make these crimps.  Poor crimps cause many problems down the road.  This link will take you to a simple tool sold by Del City that can be used for all of your primary power cables and battery cables.

We also strongly recommend covering the exposed area of the ring terminals with heat-shrink tubing.  This will minimize exposed metal areas that can lead to short circuits in the car.  Del City or Waytek are great sources for heat-shrink tubing.

If you need to, you can lengthen the primary power cables.  You can use an 8-AWG crimped butt connector to splice in another length of cable or you can solder the strands together.  Done correctly, either are a acceptable way to lengthen these cables.

This picture shows plugging the primary power cables into the rear POWERCELL in our Mustang project.

Plugging in POWERCELL battery input harness in Infinitybox system installed in 1967 Mustang

Plugging in POWERCELL battery input harness in Infinitybox system installed in 1967 Mustang

This picture shows the two primary power cables plugged into the front POWERCELL.

Front POWERCELL Mounted in 1967 Mustang

Front POWERCELL Mounted in 1967 Mustang

This picture shows the primary power cables connected to the Mega fuse holder block in near the battery in the rear of the car.

Assembled Mega Fuse block in 1967 Mustang wired with our Infinitybox system

Assembled Mega Fuse block in 1967 Mustang wired with our Infinitybox system

Each POWERCELL has three power input ports on it.  You are going to use two of these.  To keep the cell sealed, you must plug the power input dummy plug into the unused port.  This is included in your kit.

Sealing plug for POWERCELL battery input port.

Sealing plug for POWERCELL battery input port.

You can also use one of our POWERPLUGs in the open port.

Power Plug

Power Plug

The POWERPLUG is a very easy way to get fused constant battery power from the POWERCELL.  You can use this to power accessories like engine controllers, transmission controllers, audio and LED tail light controllers.

Now that you have the primary power cables properly connected to the primary fuses and the POWERCELLs, you can move on to the next step.  Stay tuned for the next post.  If you have questions in the meantime, you can contacts us by clicking this link.

Mounting Cells

So, here’s where we are in the wiring process for our customer’s 1967 Mustang.  They mounted the primary fuses and ran power from the battery.  Now it is time for mounting cells in the car.  They are using our 20-Circuit Harness kit, which includes one MASTERCELL and two POWERCELLs.  The MASTERCELL connects to the switches in the car (ignition, starter, turn signals, lights, cooling fan sensor, etc.).  The POWERCELLs are where the power comes from to turn on the powered things like the ignition, starter solenoid, turn signals, lights, cooling fan and other accessories.

The Infinitybox system works differently from other wiring harnesses.  With a traditional wiring harness, you have one box with fuses and relays in the center of the car with wire flowing everywhere from this center point.  With the Infinitybox system, you distribute the wiring through the car.  This lets you put the power distribution where you need it to keep the runs of wire short.

The MASTERCELL is going to connect to all of your switches.  Most of these are located around the steering wheel.  That is where you are going to want to mount it.  There are two POWERCELLs in this kit.  One for the front of the car and one for the rear.  You want to mount these POWERCELLs near the things that you are turning on and off.  This keeps the runs of wire short and makes installation easier in the car.

We always suggest that customers start by walking around the car and make a list of the switched electrical functions in the car.  Our configuration sheets are a great planning tool for this.  This link will take you to the standard Front-Engine configuration that is our most popular.  Outside of the normal things like lights, ignition, turn signals, fuel pumps, horns and fans, think about the other things that need switched power like amps, extra lights, transmission controllers and other custom features.

Each cell has 4 mounting points in the corners of the housings.  These are designed for a 1/4″ bolt.  Our preferred mounting method is to use a 1/4″ X 5/8″ shoulder screw.  The advantage with a shoulder screw is that you can’t over tighten the screw and crush the mounting point.  If you are using a traditional bolt, take care not to over-tighten it and crush plastic collar.

Here are few things to consider when mounting cells.  For the easiest install, you want your MASTERCELL to be as close to the switches as possible.  You can mount your MASTERCELL in the glove box, in the center console, behind, the dash or behind a kick panel.  In the case of this 1967 Mustang, the customer mounted the MASTERCELL above and to the left of the pedal box.  Here’s a good picture.

Infinitybox MASTERCELL mounted next to the pedal box in a 1967 Mustang Resto Mod

Infinitybox MASTERCELL mounted next to the pedal box in a 1967 Mustang Resto Mod

This location is out of the way but still gives them easy access to the MASTERCELL.  The screen on the MASTERCELL is a very important diagnostic tool in the system.  You won’t need to get to this often, but you want to make sure that you can get to it when you need it.  Also if you have our inLINK radio, the antenna is in the MASTERCELL.  You want to make sure that it isn’t buried in the car to get the most range on the key fobs.  There are really no other things to worry about when mounting the MASTERCELL outside of keeping the CAN cables and input wires away from the high-voltage wires on your ignition system.  This is true for any piece of electronics in the car, not just your Infinitybox hardware.

The input wires from the MASTERCELL will connect this cell to all of the switches in the car.  We’ll cover that part in later parts of this install series.

The POWERCELLs are next.  You want to put these close to the things that you are powering.  In the case of the front POWERCELL, this includes your dash power, ignition, starter solenoid, head lights, high-beams, turn signals, running lights, horn and cooling fan.  In the case of the rear POWERCELL, this includes the tail lights, brake lights, fuel pump, reverse lights, turn signals and audio in the trunk.  Remember that your POWERCELLs contain the fuses that protect the wires in your harnesses.  You want to have easy access to these cells in case one of these fuses opens.  There are also diagnostic indicators on the POWERCELLs that give you a wealth of information about how the system is operating.  You want to have good access to the cell to see these indicator lights.

The customer mounted the rear POWERCELL in the driver’s side corner of the trunk.  Here’s a good picture.

Rear POWERCELL in trunk of 1967 Mustang wired with the Infinitybox system.

Rear POWERCELL in trunk of 1967 Mustang wired with the Infinitybox system.

They fabricated a mounting plate to support it nicely.  Here’s a close up shot of the cell and the mounting plate.

Rear POWERCELL mounted in 1967 Mustang wired with the Infinitybox system.

Rear POWERCELL mounted in 1967 Mustang wired with the Infinitybox system.

This POWERCELL will be hidden behind a trim panel in the trunk.  From this location, the runs of output wire to the turn signals, brake lights, fuel pump and running lights is very short and easy to install.

This customer did something unique in their mounting of the front POWERCELL.  They wanted a completely clean engine compartment so they mounted the POWERCELL behind the driver’s fender.  See this picture.

Location of front POWERCELL in 1967 Mustang wired with the Infinitybox system.

Location of front POWERCELL in 1967 Mustang wired with the Infinitybox system.

They fabricated a sealed door inside the wheel well.  They can turn the wheels to the left, open the panel and get easy access to the POWERCELL if they need.  Here’s a closer shot of the mounting location.

Front POWERCELL Mounted in 1967 Mustang

Front POWERCELL Mounted in 1967 Mustang

This location gives them very short runs of wire from the POWERCELL to their ECU, starter solenoid, lights, turn signals, cooling fan, horn and dash power.

Depending on your car and your project, you can mount the POWERCELLs practically anywhere in the car.  The cells are rated to 125 degrees Celsius (260 F).  This means that you can mount them under the hood.  They were designed and tested to survive the temperature, shock and chemical exposure of the under-hood environment.  Like the MASTERCELL and any other piece of electronics in your car, you want to keep them clear of the ignition coils and high-voltage ignition wiring.  You also want to keep them out of the direct radiated heat of your exhaust headers.

Now that mounting cells in the car is complete, the next post will cover running primary power from the Mega fuses to the POWERCELLs.  Stay tuned for this next post.  If you have questions or comments, please click on this link to contact us.

Mounting Fuses

Here’s the first step in our 1967 Mustang wiring project.  It is mounting the fuses that protect the power feeds going to the POWERCELLs.  In our 10 and 20-Circuit Harness Kits, we give you a block of Littelfuse Mega fuses to protect the 8-AWG cables that power the cells.  In our Express Racing Kits and with our inMOTION cells, we give you a JCASE holder instead of the Mega block.

These fuses serve a very important purpose.  They protect the 8-AWG cables from short-circuits or low overloads.  The fuse in any circuit is supposed to be the weak link, electrically.  They are thermally operating devices that are designed to open and clear the circuit if too much current flows.  Wires can be fuses too, which is a bad thing.  If too much current flows through a wire, it will heat up.  As the wire heats up, the insulation can melt causing fire or other damage in the car.

As mentioned above, the fuses ultimately protect against two things.  The most common is a short circuit to ground.  If the insulation on the wire were to become damaged and the conductor were to touch the chassis, you have a very low resistance path to ground.  The insulation can become damaged over time by rubbing against a sharp edge or can be connected to ground quickly in an accident.  You can also accidentally drop a tool across an open set of terminals and make a good short to ground.  (We’ll admit that we’ve done that before.)  The second thing that the fuse protects against is a low-overload.  These are usually resistive connections to ground.  They are not as common as a short circuit.

Car batteries have a tremendous amount of stored power in them.  A low resistance path to ground will allow a lot of current to flow.  This current flow causes heating in the wire.  As mentioned above, the fuse is designed to open (blow) before the wire gets hot enough to cause damage.  The Mega fuses in your kit are sized at 60-Amps.  A 60-Amp fuse is the proper rating to protect an 8-AWG cable.

We have many different blog posts about fusing.  Here is a good one for your reference.

In the case of this 1967 Mustang, the battery is in the trunk.  The customer mounted the Mega fuse block against the trunk wall, towards the driver’s side of the car.  Here’s a picture of the fuse block mounted in the trunk.

Location of Mega Fuse Block in 1967 Mustang wired with the Infinitybox system.

Location of Mega Fuse Block in 1967 Mustang wired with the Infinitybox system.

You want to make sure that the Mega fuse block is securely mounted in the car.  There are mounting holes on the top and bottom of the holders.  We recommend using nuts and bolts with lock-washers to mount this to a flat surface like the one shown in the picture above.  Self-tapping screws will work too but aren’t as reliable as a bolt & nut with a lock-washer.

You want to have reasonable access to the primary fuses in the car.  Over its lifetime, you should really never have to change these fuses.  If you ever were to blow one, that means that something bad has happened.  You have either been in an accident and one of the cables has broken to ground or the insulation on one of the cables was worn over time.

You want to mount the fuses as close to the battery as possible.  The purpose of this is to minimize the length of unprotected wire in the circuit.  The unprotected wire is the wire between the power source and the first fuse.  We give you the Mega fuse block, the ring terminals, the 8-AWG cables and a 4-AWG cable in your kit.  You use the 4-AWG cable to connect the battery to the buss bar on the fuse block.

This picture shows the 4-AWG wire connected to the buss bar on the Mega fuse block.  The customer crimped the included ring terminal on the end of the 4-AWG wire and connected that to the buss bar.  The other side of this 4-AWG cable connects to the positive side of the battery.  This connection can be made directly to the battery, to a primary disconnect switch or to our inRESERVE battery management solenoid.  Please note that we strongly recommend a battery disconnect, either a manual switch or our  inRESERVE kit.

Also, note that they used heat shrink tubing to protect the exposed part of the terminal.  This is recommended to reduce the chance of shorting this side of the fuse block to the chassis.

Primary battery cable connected to Mega Fuse block in 1967 Mustang wired with the Infinitybox system.

Primary battery cable connected to Mega Fuse block in 1967 Mustang wired with the Infinitybox system.

Just a quick warning about connecting the Mega fuse and 8-AWG power feeds.  You want to connect all of the POWERCELL feeds back to the same Mega fuse holder.  This Mega fuse holder should be connected to the battery either directly or through a disconnect solenoid.  You must not connect power to your Infinitybox system to the starter cable at the starter motor.  This is our recommendation and that of most other electronics manufacturers.  There are surges and transients associated with the starter motor that could interfere with your ability to start the engine if you are powering the system from the starter cable at the starter motor.

Once the 4-AWG cable is connected, you need to connect the four 8-AWG feeds that go to the POWERCELLs.  Each POWERCELL needs two of these feeds.  In the case of this Mustang, two of the 8-AWG feeds route to the POWERCELL in the trunk.  The other two 8-AWG feeds run to the front of the car to connect to the front POWERCELL.  This picture shows the 8-AWG cable connected and the covers snapped in place on the Mega fuse block.  You must keep these covers in place to protect the terminals on the fuses from getting accidentally shorted to ground.  (Again, we’ve done that before with a wrench.)

Assembled Mega Fuse block in 1967 Mustang wired with our Infinitybox system

Assembled Mega Fuse block in 1967 Mustang wired with our Infinitybox system

Make sure that all of the bolted connections are tight.  Don’t over-tighten these bolts.  The recommended bolting torque is 10 foot-pounds.  Once that’s done, you’ve finished the job of mounting the fuses.  Stay tuned for the next step in the process of wiring a 1967 Mustang with our Infinitybox 20-Circuit Harness Kit.  Click on this link to contact us with comments and questions.

Ford Mustang Emblem

Mustang Install

One of our customers just sent us a series of pictures showing a very clean install of our Infinitybox system in a 1967 Mustang.  We wanted to take this opportunity to breakdown the process of wiring your car with our system into its basic steps.  This Mustang Install series will give you a chance to see the simplicity and ease of wiring with Infinitybox.  Plus, you will get a chance to learn about some of the features and benefits of our system over traditional wiring harnesses.  We will start the series with the installation of the 20-Circuit Kit in the car.  There will be follow up blog posts that will go through these steps:

  1. Mounting the Primary Mega fuse holders and running primary power from the battery.
  2. Mounting the MASTERCELL and POWERCELLs in the car.
  3. Connecting the POWERCELL outputs.
  4. Connecting the MASTERCELL Inputs.
  5. Connecting the CAN cable to the MASTERCELL and POWERCELLs.
  6. Powering up and checking the system.

You can click on any of the steps above to read more details of the wiring process.

The car is a 1967 Mustang done up as a resto-mod.  All of the suspension components are modern.  They are using a 4.6L modular motor.  It will have new heating and air-conditioning.  With all of the upgrades, the customer wanted the most modern and flexible wiring system for this car.

Our 20-Circuit Kit is replacing a traditional wiring harness.  Instead of one centrally located fuse & relay box, there are separate modules installed in the car where they are needed.  All of the switches wire locally to the MASTERCELL mounted under the dash.  The tail lights, brake lights, fuel pump, turn signals and audio in the rear of the car wires to the local POWERCELL.  The head lights, high-beams, ignition, starter solenoid, horn, fan, parking lights, turn signals and dash power come from the POWERCELL mounted in the front of the car.  The only cable running from the front to the back of the car is power and the CAN cable connecting the cells.

Keep watching for updates on our blog to see the details of this Mustang install.  You can contact us with questions or comments by clicking this link.

Turn Signals with a Trailer Converter

A common question that we get relates to wiring turn signals with our 10-Circuit Kit.  A lot of guys want to know if they can wire their cars or trucks with a 10-Circuit Kit instead of a 20-Circuit Kit.  We put up a post on our blog a while ago talking about the benefits of one kit over the other.  You can read that at this link.

For guys wiring with the 10-Circuit Kit, a lot ask about how to get our 1-filament turn signal feature when there is only one POWERCELL in the system.

Our standard 20-Circuit Kit gives you several different options for your turn signals in the rear of the car or truck.  This link will get you more detail.  The option that raises the most questions is what we call 1-filament turn signals.  This version uses one filament from a bulb on both sides of the rear of the car to be both the turn signal and the brake light.  The easiest way to check for this is by the color of the lenses on your rear turn signals.  If they are red, you probably have a one filament configuration.  If they are amber, you’d use what we call multi-filament.

To manage what we call 1-filament turn signals, the POWERCELL turns on both the left and right turn signal outputs at the same time when you step on the brake light.  We also have special software in the system that will let one turn signal override the brake light if you have a turn signal on while stopped.  With our 20-Circuit Kit, you have two POWERCELLs in the system.  The turn signals coming off of the rear POWERCELL act differently than the turn signals on the front POWERCELL.

When you wire your car with our 10-Circuit Kit, you only have one POWERCELL in the system.  This means that you have only one pair of outputs controlling your turn signals.  You cannot control 1-filament turn signals directly from a single POWERCELL.  If you did, your front turn signals would both turn on when you stepped on the brake pedal.

To wire 1-filament turn signals with our 10-Circuit Kit, you need to add a Trailer Light Converter to your wiring harness.  These are simple controllers that replicate what we are doing in software for the 1-filament turn signals.  This schematic shows you how to wire in a trailer light converter to a 10-Circuit Kit.

Picture of wiring diagram showing how to use a trailer converter with the Infinitybox 10-Circuit Kit.

Picture of wiring diagram showing how to use a trailer converter with the Infinitybox 10-Circuit Kit.

There are lots of different companies that make trailer converters.  Our customers have recommended these two options.

Tow Ready 119130

Hopkins 48895

Contact us if you have any questions about wiring your turn signals.  You can download the application note in PDF format by clicking this link.

Detroit Speed Headlight Door Kit

Our Infinitybox system can be used to wire practically anything in  your restoration, pro-touring car or race car.  Here’s another great example.  Kyle Tucker’s team at Detroit Speed, Inc. have a long history of innovation.  They sell a wide array of products for muscle cars from the mid-1960’s into the early 1980’s.  One of their most popular products to our customers is their Electric RS Headlight Door Kit.  This lets you replace the vacuum actuated headlight door mechanism on your 1968 or 1969 Camaro RS.  You can get more information on the kit here.

The Detroit Speed Headlight Door Kit gives you everything that you’d need to replace the mechanisms to open and close the headlight doors.  It is well engineered and comes with a great set of instructions.  You can download them here.  This kit is easy to install and even easier to wire when you are using our Infinitybox 10 or 20-Circuit Harness Kit.

The Detroit Speed Headlight Door Kit needs to get a signal when the parking lights are on and when the headlights are on.  Depending on which lights are on, the kit will open and close the headlight doors.  With a traditional wiring harness, you would need to run wires from the headlight switch on the dash all the way forward to the headlights.  With the Infinitybox system, power for the lights and the Headlight Door Kit comes locally from the POWERCELL mounted in the front of the car.  The following diagram shows how you connect your front POWERCELL to the connector on the Detroit Speed Headlight Door Kit.  Essentially, you splice off the parking light and head light output wires from the front POWERCELL and connect these wires to the parking light and headlight terminal on their controller.  Remember, that this is coming from the POWERCELL not the MASTERCELL.

Picture of wiring diagram showing how to wire the Detroit Speed RS Headlight Cover Motors with the Infinitybox System.

Picture of wiring diagram showing how to wire the Detroit Speed RS Headlight Cover Motors with the Infinitybox System.

The Detroit Speed Headlight Door Kit needs to get a constant power feed from the battery.  You can connect this directly to the battery or use one of our POWERPLUGs to get fused battery power locally from the POWERCELL.

You can download a PDF of this wiring diagram by clicking this link.  If you have any questions about wiring the Detroit Speed Electric RS Headlight Door Kit or any other wiring questions, give our team a call.

 

Example of a General Motors Ignition Switch

GM Ignition Switch

Wiring any switch into the Infinitybox system is really easy.  You just have to remember that the MASTERCELL input wire needs to get connected to ground to turn something on.  In most cases, you can simply connect the MASTERCELL input to one side of the switch and ground the other.  When you close the switch, the MASTERCELL input gets connected to ground and the output turns on.  This blog post is going to cover wiring the GM Ignition Switch with our Infinitybox system.

With most OEM switches and the original switches that are in your car, you can connect the battery feed from the switch to ground.  Then you connect the MASTERCELL input wire to the terminal on the switch that powered the original function.  Here’s a good example for a GM Ignition Switch.  This GM Ignition Switch was used in most Chevrolet and Pontiac cars from 1969 through 1994.

Picture of a wiring diagram showing how to connect Infinitybox MASTERCELL inputs to the GM Ignition Switch

Picture of a wiring diagram showing how to connect Infinitybox MASTERCELL inputs to the GM Ignition Switch

You connect the original battery feeds for the GM ignition switch to ground.  You then connect the MASTERCELL input wires for the ignition and starter to their respective terminals on the switch.  When you turn the key to the ignition position, the switch connects the MASTERCELL input wire for the ignition to the ground through the battery terminal.  This sends a signal to the POWERCELL to turn on the ignition output.  The same thing happens when you turn the key to the starter position.  We created a simple wiring diagram showing you how to wire this GM ignition switch.

You can download a copy of this wiring diagram by clicking this link.

You can contact our technical support team with more questions at this link.

Picture of Digi-Tails Sequential Tail Lights

Digi-Tails

Our Infinitybox system is designed to control about anything electrical in your car, truck or custom vehicle.  Here’s an example of wiring tail lights manufactured by Digi-Tails.

Digi-Tails makes a very broad range of LED tail light assemblies for a full range of vehicles.  If you’re building it, they probably have a kit for your car.  This includes Mustangs, Camaros, Tri-Fives, MOPAR and most anything else.  They make traditional and sequential kits.  You can check out their full product line here.

Wiring their kits with your 10-Circuit or 20-Harness from Infinitybox couldn’t be simpler.  The bottom line is you wire their assemblies just like you would wire the traditional tail lights that came with your car.  They have a wire for the parking lights, the left turn signal and the right turn signal.  You connect those wires to the same outputs on the rear POWERCELL.  Connect your MASTERCELL input wires to the turn signal stalk and the brake pedal and you’re ready to go.

Digi-Tails tries to match the original wiring colors in the OEM harness to their wiring.  Depending on the kit you have from them, the wires for the turn signals and running lights may be a different color.  Here’s how you want to match your POWERCELL output wires to their wires.

  • Their Driver Side Tail Lights or Driver Side Turn Signal should connect to the LEFT TURN SIGNAL from your rear POWERCELL.  In most Infinitybox kits, this is the brown wire but always check your configuration sheet.
  • Their Passenger Side Tail Lights or Passenger Side Turn Signal should connect to the RIGHT TURN SIGNAL from your rear POWERCELL.  In most Infinitybox kits, this is the violet wire but always check your configuration sheet.
  • Their Running Lights wire should connect to the PARKING LIGHT output from your rear POWERCELL.  In most Infinitybox kits, this is the yellow wire but always check your configuration sheet.

The only real difference when wiring a Digi-Tails tail light panel is that they need a constant 12-volt power feed to power the electronics on their LED board.  In most of their kits this is the orange wire going to each tail light assembly.  Check their manual for the specifics of your kit.  You can easily do this with one of our POWERPLUG 12-volt accessories.  This simply plugs into one of the unused power ports on your rear POWERCELL.  It has an integrated fuse holder to properly protect the wire against getting shorted to ground.  In this case, we’d recommend fusing that wire with a 5-amp fuse.  You can learn more about the POWERPLUG at this link.

When using the Digi-Tails tail lights, you want to use the MASTERCELL inputs for 1-filament.  By doing this, you are setting the system to manage the turn-signals and the brake lights together on the same outputs.  This link will take you to an older blog post that talks about our different turn signal options.

Here is a simple diagram that shows you how to connect the outputs from your rear POWERCELL to any of the Digi-Tails tail light kits.

Picture of a wiring diagram showing how to wire Digi-Tails Sequential Lights with Infinitybox

Picture of a wiring diagram showing how to wire Digi-Tails Sequential Lights with Infinitybox

You can download a copy of this diagram by clicking this link.

Contact our technical support group if you have questions about wiring your Digi-Tails with our Infinitybox system.

High-Beams

Here’s another cool feature that is built into our 10 and 20-Circuit Harness Kits.  We give you a very simple way to toggle between your headlights and high-beams.

In most cases, you have a separate input for your headlights and a separate input for your high-beams.  When the headlight input is grounded through the switch, the headlights turn on.  When the high-beam input is grounded, the high-beams turn on.  This link will take you to one of the most common headlight switches and a wiring diagram showing you how to connect it to your MASTERCELL inputs.

In some cases, the car may have a momentary switch as part of the steering column that is supposed to control the headlights and high-beams.  There are lots of kits out there that manage this but they are unnecessary with our 10 and 20-Circuit Kits.  We build that functionality in to the kits.  You simply need a momentary button to control your high-beams.

If you look at your configuration sheet, you’ll see an input that is called “Alternating Headlight Toggle”.  It does something pretty simple.  The input is designed to connect to a momentary switch.  The other side of the momentary switch should connect to ground.

If your headlights are on and you press and release this momentary switch, the headlights will turn off and your high-beams will turn on.   If you press and release the momentary switch again, the high-beams will turn off and your headlights will turn on.  Essentially, this switch will allow you to toggle between your headlights and high-beams.

Now, if you headlights are off and you press the switch, the high-beams will turn on.  This is for a flash-to-pass function.  Again, this is built into the system.  No external controllers or relays are required.

If you are using a newer OEM steering column, there is usually a switch that closes when you pull back on the turn-signal stalk.  You’d connect one side of this switch to the Alternating Headlight Toggle input on the MASTERCELL then ground the other side.

Both IDIDIT and Flaming River make great aftermarket columns.  They both have upgrade options that put a momentary button on the end of the turn-signal stalk.  You can connect that button to the Alternating Headlight Toggle input and get the same function.  You do not need their relay controllers to do this.

This link will take you to the Dimmer Switch option from IDIDIT.

This link will take you to the dimmer switch kit from Flaming River.  You do not need their relay and harness kit.

Contact our technical support team if you have questions about wiring your headlights and high-beams.