MASTERCELL

The MASTERCELL is the brain of our Infinitybox system.  It is the core of our universal 20-Circuit Kit.  It connects to all of the switches in your car and decides what should be turning on and off in your electrical system.  The MASTERCELL connects to the POWERCELLs, inMOTION cells and other Infinitybox accessories through our CAN network and sends commands to control everything in your car.

The Infinitybox MASTERCELL

The Infinitybox MASTERCELL

All of your switches wire to the MASTERCELL.  Examples include you headlight switch, ignition switch, brake pedal switch and turn signal stalk.  You can even connect the MASTERCELL inputs to your ECU directly to take signals to control your cooling fans and fuel pump.  The MASTERCELL inputs work by being grounded to turn the input on.  There is no power at the switch.  Instead of having to bring power to the switch, you simply connect the MASTERCELL input to one terminal of the switch and you ground the other side of the switch.  When the switch is turned on, the MASTERCELL input gets connected to ground.  The MASTERCELL sees this ground signal and sends the commands to turn things on and off on the POWERCELLs.  Check out this blog post for a more detailed description of how the MASTERCELL inputs work.

The MASTERCELL also has the capability to include our optional inLINK radio.  This accessory gets you remote control of your Infinitybox system through a key fob.  You can control your lights, pop your trunk and access our power security and immobilizer features by pushing a button.  The receiver for the inLINK radio gets installed inside the MASTERCELL so there is no separate box that you need to install, wire or conceal.  This link will take you to more details on inLINK.

The MASTERCELL also has our inSIGHT display installed in it.  This LCD screen is your window to the Infinitybox system.  It lets you see what the system is doing and it lets you easily troubleshoot problems if you have them.  This link will take you to our diagnostics and troubleshooting guide to learn more about what you can do with the MASTERCELL inSIGHT screen.

This video will walk you through the details of the MASTERCELL.

You can watch our entire video series on YouTube.  Be sure to subscribe to our channel to see new videos as they post.

We have the solid model for the MASTERCELL available to our customers to help with their planning and mocking up process.

Click on this link to contact our team with questions about buying our Infinitybox system to wire your street-rod, hot-rod, resto-mod, race car, kit car or Pro-Touring build.

 

What’s In The Box?

Picture of the Infinitybox 20-Circuit Kit

Picture of the Infinitybox 20-Circuit Kit

Our Infinitybox 20-Circuit Kit is a universal wiring harness.  You can wire practically any street rod, resto-mod, restoration, hot rod, kit car or Pro-Touring car with it.  It gets you all of the electrical control of lights, ECU’s, starters, fans, pumps and accessories that you need plus it gets you the capability to get the latest and greatest control of your car.

The 20-Circuit Kit is a universal wiring system that includes all of the components that you need to wire your car.  It includes our MASTERCELL, two of our POWERCELLs, the primary power harnesses to connect your battery to the POWERCELLs, the primary fuses to protect these power harnesses, the output harnesses from the POWERCELLs, the input harnesses to go from your MASTERCELL to your switches and the CAN cable that connects the cells together.  The kit also includes the manual for the system and the configuration sheet that is your road map to wiring your car.

The harnesses included in the kit are universal.  They have the mating connector for our system on one end.  The other end is a pig-tail.  You run this harness to your switches or your accessories.  You cut it to length and make the connection.

This video features Jay Harris, president of Infinitybox, walking through the contents of a 20-Circuit Kit.


With the 20-Circuit Kit as your electrical foundation, you can add any of our accessories to get a powerful and functional electrical system.

Be sure to subscribe to our YouTube channel and click on the bell icon so you get notified when we post new videos.

Click on this link to contact our team to purchase the Infinitybox system or to ask technical questions.

Infinitybox Introductory Video

Infinitybox is excited to announce a new series of videos going through the details of our Infinitybox system.  We’ve shot them in a very simple and effective way to get the point across.  Jay Harris, the president of Infinitybox, will take you through every piece of our system.  He will also walk you through the process to wire your car with our Infinitybox system.

In this introductory video, Jay describes how our Infinitybox system works and how it is different from traditional wiring harnesses.  Until Infinitybox came onto the scene in 2009, little had changed in the way you wire a car since the Model T.  Our system revolutionized the way restorations, kit cars, resto-mods, street rods, hot rods, race cars and Pro-Touring cars were wired.  Instead of a single, central box of fuses and relays, the Infinitybox gives you separate modules that you put in the car where you need them.  The separate Infinitybox modules are connected with a simple and thin data cable.  You can watch the introductory video here.


This is the first video in the series.  There are more coming that go through each of our specific products.  Be sure to subscribe to our YouTube channel Infinityboxllc and click on the bell icon to get notified when we post new videos.

Click this link to contact our team with any questions about our Infinitybox system.

Infinitybox Programming Options

Since 2008, Infinitybox has created the most comprehensive electrical system on the market for restorations, resto-mods, street rods, kit cars, race cars and Pro-Touring builds.  No other company can provide a single system to control your lighting, ignition system, starter, cooling fans, fuel pumps, power locks, power windows, alarms, security, heating & air-conditioning control, battery management and touch screen control.  In addition to that, no one else can give you the options to customize the way your electrical system works like Infinitybox can.  We wanted to update our menu of programming options for the Infinitybox system.  This blog post is going to summarize the different ways we can tailor your system to your specific car.  We strongly encourage you to review this list before you start to work through setting up a custom configuration with our team.

All of the options on this list can be added to any of our 20-Circuit Kits.  We do not charge for these modifications.  There are certainly options beyond this that we can evaluate for you.  Please contact our technical support team with additional requirements that are not included in this blog post.  

Ignition & Starter

Ignition and Starter Outputs

  • The MASTERCELL inputs and POWERCELL outputs for the ignition and starter as defined on the configuration sheet that came with your kit cannot be moved.  There are safety and security constraints that require that they stay in their assigned locations.  The same is true for the MASTERCELL input for the Neutral Safety switch.  This cannot be moved to another input.

Traditional Ignition/Starter control vs. One-Button Start

  • You have two options to manage your ignition and starter outputs.  These are built into all of our configurations and selecting the options requires no custom code.
    1. You can use a traditional keyed ignition switch with contacts for the ignition and starter.  Wire the MASTERCELL inputs for Ignition and Starter to your ignition switch and connect their respective POWERCELL outputs to your Ignition system and your Starter solenoid.  Click on this link for more detail on wiring your ignition switch.  Also, the MASTERCELL inputs for the ignition and starter do not need to be wired to a keyed ignition switch.  You can wire them to any type of switch that you like.  The ignition input must be connected to a switch that latches on and off.  The starter input must be wired to a momentary switch.
    2. You can also use our One-Button Start feature.  This manages the POWERCELL outputs for the Ignition and Starter from a single momentary button.  To start the engine, you press and hold the momentary button that is wired to the MASTERCELL input for the One-Button Start.  This turns on the Ignition output, waits one-second then turns on the POWERCELL output for the Starter.  Once the engine starts, you release the button.  That turns off the starter output but leaves the Ignition output on.  To shut down the car, you simply press and release the button again.  Click on this link for more details.

Extra Ignition Activated Outputs

  • We can program the system to turn on extra outputs with the Ignition.  For example, you may want an extra output on the rear POWERCELL to turn on with the Ignition to power an amplifier and a sub-woofer.  Any of the outputs defined as OPEN can be programmed to turn on and off with either the standard Ignition input or the Ignition triggered by the One-Button Start input.

Ignition-Only Outputs

  • We can program specific outputs so that they can only turn on when the Ignition is on.  These outputs will turn off when the ignition is turned off.  For example, you could take one of the OPEN outputs on the rear POWERCELL and use that to power your back up lights.  You would connect the corresponding MASTERCELL input to the switch on your transmission.  When the transmission is in reverse, that would trigger the MASTERCELL input and turn on the POWERCELL output connected to the brake lights.  We can program this MASTERCELL input so that the output will only turn on when the Ignition is on.  That way, your reverse lights will not stay on if you leave the transmission in reverse and turn off the Ignition.  By default, your turn signals are programmed using this Ignition-Only function.  You cannot turn on your turn signals unless the Ignition is on.

Headlights and High-Beams

  • There are several options for your Headlights and High-Beams that are pre-programmed into our standard configurations.  By choosing different MASTERCELL input wires, you can get different functions for your Headlights and High-Beams.  No programming changes or custom code are required to make these work.
    1. The standard inputs for the Headlights and High-Beams use soft-starting to turn on their respective POWERCELL outputs.  This means that we gradually ramp up the POWERCELL output current over the first half of a second.  This gradually applies power the lights and will minimize the in-rush current to incandescent bulbs.  You can use these inputs for traditional Headlight and High-Beam bulbs or LED’s.  If you are using HID Headlights or HID High-Beams, you must use the MASTERCELL inputs for the HID options.  These inputs eliminate the soft-starting on the outputs.  Check out this blog post for more detail.  
    2. There is an Alternating Headlight option built into all of our standard configurations.  This function lets you toggle between your Headlights and High-Beams using a momentary button.  This link will get you more details.

Headlight Delays

  • We can program a delay on your Headlights.  This delay will keep the Headlight output on for a period of time after the switch is turned off.  This delay can be set between 10 and 60 seconds.

Lighting Switch Options

  • Our standard programming for Headlights, High-Beams, 4-Ways and Parking Lights is TRACK.  This means that the lights will TRACK the state of the switch.  When the switch is on, the output is on.  When the switch is off, the output is off.  We can program these MASTERCELL inputs so that the outputs TOGGLE.  You would connect the MASTERCELL input to a momentary button.  A momentary press of the button would turn the output on.  A second momentary press of the button would turn the output off.

Turn-Signals

  • The turn signal outputs must remain as outputs 1 & 2 on your front and rear POWERCELLs.  These cannot be moved.  You have several options for your Turn-Signals that are built into our standard configurations.  These require no code changes.  You simply choose the MASTERCELL inputs that you need to get the Turn-Signal set up that you want.
    1. Our most popular Turn-Signal option is our Mechanical Column option.  That means that the MASTERCELL inputs for the Turn-Signals are controlled by the mechanism in the steering column and the are mechanically canceled when the steering wheel is returned to its normal position after completing a turn.  The left and right Turn-Signals will flash as long as the switch is closed in the column.
    2. We also have an option called Self-Canceling Turn-Signals.  To use this function, you simply choose these MASTERCELL inputs.  You would only be using this function if you are building a car without a traditional Turn-Signal mechanism in the steering column.  Mostly, this feature is used by customers building Factory Five Roadsters.  They have momentary switches on the dash for left and right turn.  The momentary switch triggers the MASTERCELL input and the POWERCELL flashes the turn signals for a period of time then self cancels.  Please read this blog post for more detail on the Self-Canceling Turn-Signal feature.

Brake Lights

  • Your brake lights must remain as output 3 on the rear POWERCELL if you’re using the multi-filament brake lights.  You have two options for controlling your Brake Lights that are build into the standard configuration.  These options require no code changes.  You simply choose the MASTERCELL inputs that you need to get the Brake Light set up that you want.
    1. If you have a dedicated Brake Light bulb in the back of the car, you are going to choose the MASTERCELL input that is called “Brake Lights with Multi-Filament Bulbs”.  This means that there is a separate bulb that works as the Brake Lights in the rear of your car.  There is a quick rule of thumb that you can use.  Use the “Brake Lights with Multi-Filament Bulbs” input if your turn signal lenses are amber.  Please read this blog post for more detail.
    2. We also have a Brake Light option called “Brake Lights with 1-Filament Bulbs”.  This means that there is a single filament on your Turn-Signal bulbs that acts as both the Turn-Signals and the Brake Lights.  As a rule of thumb, you are going to use the MASTERCELL input for “Brake Lights with 1-Filament Bulbs” if your Turn-Signal lenses are red.  Read this blog post for more details.

Theater Dimming

  • Any of the OPEN outputs on your configuration sheet can be used to power your interior lights or accent lights.  You simply connect the MASTERCELL input to your switch and connect the OPEN POWERCELL output to your dome lights, interior light or accent light.  When the switch is on, the lights are on.  This blog post will get you more detailing on wiring pin switches on doors.  We can program the output that you choose for these lights to be Theater Dimmer.  That means that the light will gradually fade away when the MASTERCELL input is turned off.  Theater Dimming can only be programmed to OPEN outputs between outputs 1 and 8.  Outputs 9 and 10 cannot be programmed to be Theater Dimmed.  We have two timing options: 5 seconds and 10 seconds.

inLINK Key Fob Options

Security and Immobilizer Options

  • These features require our inLINK wireless control module option.  By default, pressing the LOCK button on the inLINK Key Fob enables security.  The Parking Lights will flash once and the MASTERCELL inputs for the Ignition, Starter and Fuel pump will be blocked so that you cannot start the car.  Pressing the UNLOCK button on the inLINK Key Fob will disable security.  The Parking Lights will flash twice and the MASTERCELL inputs that control the Ignition, Starter and Fuel Pump will let you start the car.  We can program these additional functions related to Security and Immobilization.
    1. We can program other MASTERCELL inputs to be blocked when security is enabled.  For example, some customers may want to block external switches for door poppers when security is enabled.  Please click on this link to see this in action.
    2. We can program other outputs to indicate when security is being enabled or disabled.  For example, we can set the Horn output to honk once when security is enabled and twice when it is disabled.
    3. We can program the lock outputs on inMOTION to lock the doors when security is enabled and unlock when security is disabled.  This option requires our inMOTION cell.

Door Poppers and Trunk Poppers

  • The system can be programmed to control popper solenoids from the inLINK key fob.  Any of the OPEN outputs on the POWERCELLs can be programmed to be controlled by inLINK.  We program these outputs to be pulsed for 1-second when triggered from a button on the inLINK Key Fobs.

Express-Down Feature for Power Windows with inMOTION

  • This feature requires inMOTION in addition to inLINK.  We can program the system so that a press of a button on the inLINK Key Fob will express down one or multiple power windows that are powered by inMOTION.

Other OPEN Output Options

  • The OPEN outputs can be used to control auxiliary functions is your car or truck.  For example, these can be used to power extra lights, fuel pumps, fans, audio systems, poppers and valves.  Their default action is TRACK (Input is on, output is on.  Input is off, output is off.)  This default is how most of our customers use these outputs.  There are additional ways that these outputs can be controlled by their respective inputs.
    1. We can program an OPEN output to be timed.  When the MASTERCELL input is turned on, the POWERCELL output will turn on for a pre-programmed time then shut off.  The most common use of this option is for door or trunk poppers.  We can program the timer on an OPEN output in the range of 1 to 120 seconds.
    2. We can program an OPEN output to TOGGLE.  A momentary switch closure to the MASTERCELL input would turn the POWERCELL output.  A second momentary switch closure would turn the POWERCELL output off.
    3. We can program a single MASTERCELL input to control multiple OPEN outputs.  You can use this function to turn on several POWERCELL outputs from a single switch.

Pulse-Width Modulation (PWM)

  • This is an advanced function.  We can program MASTERCELL inputs to pulse-width modulate outputs 1 through 8 at a fixed duty cycle.  Outputs 9 and 10 cannot be pulse-width modulated.  The base frequency is 200 Hz.  Duty cycles can be set between 10 and 90%.  We can program multiple MASTERCELL inputs to control a single POWERCELL output at multiple PWM duty cycles.  This would let you control multiple levels of brightness or fan speeds on a single POWERCELL output with different MASTERCELL inputs.  Please contact Infinitybox technical support with questions about this features.

Please click on this link to get to our Custom System Configuration form.   

Updating inTOUCH MAX Screen

This blog post will walk you through the steps to update the screens and code on an Infinitybox inTOUCH MAX Screen.

Please note that these instructions are for the legacy inTOUCH MAX screens that were manufactured through 2013.  If you have an inTOUCH NET smart device interface, this does not relate to you.  Unless specifically directed by a technical support representative from Infinitybox, you do not need to do this.  You can stop reading here.  

Here are the instructions.

  1. You will need an SD card that is a maximum size of 2GB (a smaller card will work fine).  It must be formatted as FAT16 (or just FAT) not FAT32 on a PC not a Mac.  You can find a video showing how to do this by clicking this link.
  2. You will receive an email from Infinitybox technical support that will have the files needed to be loaded onto the SD card.  Save these files to the SD card.  Do not put these in a folder on the SD card.
  3. Power down the touch screen and the complete Infinitybox system.  Insert the SD card into the slot on the screen. The SD card slot is located on the opposite side of the circuit board where the REACH serial number sticker is.  This picture will show you where the SD card slot is and the proper orientation of the card.

    Location of the SD Card Slot on the Infinitybox inTOUCH MAX Screen

    Location of the SD Card Slot on the Infinitybox inTOUCH MAX Screen

  4. Power up the system, the screen should be blank and the green LED labeled D1 on the back of the screen should be lit and the LED labeled D2 should be flashing rapidly. After about 30 seconds, the D2 LED will stop flashing and the screen back light will turn on.
  5. The screen is now reprogrammed, remove power from the screen and remove the SD card.

Please contact Infinitybox technical support with additional questions.

Updating inVIRONMENT

This blog post will cover the steps to update the software on our inVIRONMENT Vintage Air Gen-IV Interface Controller.

Before you get too far, 99.99% of our customers will never need to update inVIRONMENT in the field.  This blog post is intended to have this documented for the 0.01% of them that will.  The only reason why you’d need to update inVIRONMENT would be if you are converting a legacy system to a newer version.  In the overwhelming majority of cases, you can stop reading here.  You need to do nothing with the code on your inVIRONMENT unless explicitly directed by one of our technical support engineers.  

You also would not be updating inVIRONMENT without updating the MASTERCELL and other cells in your system.  This blog post is going to assume that you have already installed the software to run the inCODE programmer and you have followed the steps to set that up.

NOTE: DO NOT PLUG THE inCODE CONNECTOR INTO THE inVIRONMENT PROGRAMMING HEADER UNTIL AFTER YOU HAVE SET THE PROGRAMMING JUMPERS IN STEP 6.  DOING DO WILL DAMAGE THE inVIRONMENT PROCESSOR AND WILL VOID THE WARRANTY.  

Here are the steps.

  1. Save the inVIRONMENT HEX file to the desktop of your computer.  This would be in the email sent to you from Infinitybox technical support.
  2. Disconnect the battery.
  3. Remove all connectors from the inVIRONMENT module and take inVIRONMENT out of the car.
  4. Remove the 4 screws from the back of inVIRONMENT and take off the cover.
  5. Identify the Programming Header Connector and the Programming Jumpers.  This picture will show you where they are on the inVIRONMENT board.

    Picture of the Infinitybox inVIRONMENT Board Showing the Programming Header and Programming Jumpers

    Picture of the Infinitybox inVIRONMENT Board Showing the Programming Header and Programming Jumpers

  6. Move the two Programming Jumpers from the RUN position to the PROG position.  The PROG position puts the two jumpers on the pins closest to the Programming Header.  You can use a pair of needle-nose pliers or a pair of tweezers to remove these jumpers and move them to the PROG position.  FAILURE TO DO THIS STEP WILL DAMAGE THE inVIRONMENT PROCESSOR AND WILL VOID THE WARRANTY.  This picture will show you the jumpers in the PROG position.

    Picture of the Infinitybox inVIRONMENT Board Showing the Board Set for Programming

    Picture of the Infinitybox inVIRONMENT Board Showing the Board Set for Programming

  7. Plug the inCODE connector into the Programming Header on the inVIRONMENT board.
  8. Launch the inCODE Program PIC software.
  9. Click on the BROWSE button in the Program PIC software and select the HEX file that we emailed to you.  See the following picture for details.

    Picture of the inCODE Graphical User Interface

    Picture of the inCODE Graphical User Interface

  10. Click on the PROGRAM button.
  11. Wait for the green light on the inCODE programmer to stop blinking.  The last line of text in the Program PIC window should read “No Errors”.
  12. Unplug the inCODE connector from the Programming Header on the inVIRONMENT board.
  13. Move the Programming Jumpers back to the RUN position.  The RUN position puts the two jumpers on the pins furthest from the Programming Header.  This picture will show you the correct position.

    Picture of the Infinitybox inVIRONMENT Board Showing the Board Set for Run

    Picture of the Infinitybox inVIRONMENT Board Showing the Board Set for Run

  14. Replace the cover on the inVIRONMENT module and replace the 4 screws on the back.
  15. Reinstall the inVIRONMENT module in the car and plug in all of the connectors.
  16. Reconnect the battery.

If you have any questions about this process, please click on this link to contact our technical support team.

Picture of a door pin switch

Wiring Door Pin Switches

This blog post is going to cover how to wire your interior and dome lights.  In most cases you want these lights to turn on when you open a door to your car.  We’ll show you the best way to wire your door pin switches and connect your POWERCELL outputs to your dome lights and interior lights.

Picture of a door pin switch

Picture of a door pin switch

Each door in your car has a pin switch.  Sometimes these are called door jamb switches.  They are very simple devices.  They have one terminal on them.  This terminal originally connected to the ground side of your dome light circuit.  The threaded metal part of the switch connected to your cars ground through the metal part of the door jamb.  These switches work backwards from most people would expect.  When the car door is open, the contact on the switch is closed to ground.  If you think about it, that is what you want.  You want the circuit completed when the door is open.  In the original wiring on most cars, you had battery power supplied to one side of your dome light.  The other side of the light was connected to ground through the door pin switch.  When you opened the door, the switch closed.  This completed the circuit to ground so the dome light came on.

The inputs to an Infinitybox MASTERCELL work the same way.  They get activated when they are connected to ground through a switch.  You can learn more about how the MASTERCELL inputs work by clicking this link.

We do not dedicate a POWERCELL output for dome lights or interior lights.  You can use any of the OPEN outputs that are listed on your configuration sheet to do this.  Simply choose an OPEN output on a POWERCELL and connect that to one side of your dome light circuit.  This link will get you more information on using OPEN outputs.  Connect the other side of your dome light circuit to ground.  Check your configuration sheet and get the MASTERCELL input that corresponds to the OPEN POWERCELL output that you picked.  That input is going to connect to your door pin switches.

In most cases, you will want to have your dome lights turn on if any of your car’s doors are opened.  This is the same if you have a 2 or 4-door car.  To do this, you are going to wire the pin switches in each of your doors in parallel.  You are going to take your MASTERCELL input and connect it to each of the terminals on your door pin switches.  You can splice off of the input wire at the MASTERCELL and run separate wires to each switch.  You can also daisy-chain from one switch to the next in the car.  This wiring diagram shows how to connect the MASTERCELL input for your dome lights to the door pin switches.

Picture of an Infinitybox wiring diagram showing how to wire door pin switches

Picture of an Infinitybox wiring diagram showing how to wire door pin switches

If you open one of your doors, the door pin switch will ground the MASTERCELL input.  The MASTERCELL will send a command to the POWERCELL to turn on the output for the dome lights.  If you open a second door, the input will still be grounded because the switches are wired in parallel.  The dome lights will not turn off until you close all of the open doors.

An added bonus of our Infinitybox system is the ability to theater dim your dome lights.  When the doors close, we can set your dome light to slowly fade away over 10 seconds.  Give our technical support team a call to get this feature on your system.

You can download a PDF copy of this wiring diagram at this link.

If you have questions on how to wire your door pin switches with our Infinitybox system, click on this link to get in touch with our technical support team.

Wiring Switches in Parallel

Our Infinitybox system is the most powerful and flexible wiring harness available in the market. Our MASTERCELL inputs are flexible and adaptable for practically any application. A customer just asked this question and we thought that it was a great way to show off the flexibility of the MASTERCELL inputs. The customer is wiring the power window switches in his car. He wanted to know if there was a way to wire a parallel switch that would control all 4 windows at the same time. The answer is “yes” and this blog post will show you how to do it.

Our MASTERCELL inputs work by getting connected to ground. This link will take you to an older blog post that goes through the details of how the inputs work and how to connect a switch to them. Since the inputs work by a ground trigger, this gives you a lot of flexibility with your switches.

This picture shows you how to wire in a parallel switch to control multiple inputs simultaneously.

Picture of a wiring diagram showing how to wire two Infinitybox MASTERCELL inputs in parallel

Picture of a wiring diagram showing how to wire two Infinitybox MASTERCELL inputs in parallel

In this example, we’re showing two switches that control the driver’s and passenger’s windows. For the sake of clarity, we’re only showing the front windows and we’re only showing the down action. These switches are labeled Driver Down and Passenger Down in the wiring diagram. You are going to follow the wire colors from your configuration sheet to wire the switches and the power wires that go to the window regulator motors.

To wire in the parallel “master” switch, you are going to connect the MASTERCELL inputs for the Driver’s and Passenger’s switch together and bring them to the parallel switch. The important thing here is that you need to put a diode on each of the wires from the Driver’s and Passenger’s switch. These diodes are electrical check valves. They only let current flow in one direction. They block the flow of current in the other direction. Without these diodes, both the MASTERCELL inputs would be connected together at the parallel switch. They would both turn on with either switch. The diodes electrically isolate the two MASTERCELL inputs so they are operate independently from the individual switches but work together from the parallel switch.

You can source these diodes anywhere. We recommend a 1N4001 diode. These can be purchased easily from Amazon or other on-line retailers. The orientation of the diodes critical. This will not work correctly if they are installed backwards. Note the orientation of the diode symbol in the wiring diagram above. The line on the diode symbol corresponds to the silver line on the case of the diode. Look at the picture below.

Example of a simple diode

Example of a simple diode

We only show the down action for the power windows in this diagram. We also only show 2 window switches. You can join all 4 inputs together through diodes if you want to control your front and rear windows from a single parallel switch. You can also repeat this for the up action of your power windows.

This same approach can be used for other switches like your lighting. We posted a wiring diagram a while ago showing you how to wire your head lights and parking lights from a single switch using a similar arrangement. You can view that blog post by clicking this link.

Click on this link to download a PDF version of this wiring diagram.

Click on this link to contact our technical support team with any additional questions about wiring your car or truck with our Infinitybox system.

 

Sample picture of the FAST XFI 2.0 Fuel Injection Controller

FAST XFI 2.0 Wiring

Electronic Fuel Injection systems have completely changed the way guys control their engines in resto-mods, street rods, kit cars and Pro-Touring builds. All the new systems are simple to install, can control hundreds of horse power and automatically tune themselves. Fuel Air Spark Technology (FAST) has been one of the most significant innovators in the area of EFI systems for the restoration and performance markets. Our Infinitybox plays nicely with any EFI system on the market including the full range from FAST. This blog post will show you how to integrate their FAST XFI 2.0 system with our Infinitybox 20-Circuit Kit.

This blog post is going to walk you through the details of wiring your FAST XFI 2.0 EFI system with our Infinitybox system. Specifically, we’re going to talk about wiring primary power, wiring ignition power, wiring the fuel pump trigger and wiring the cooling fan trigger. All of the rest of the connections between the FAST XFI 2.0 and the engine are covered in their instructions. Please carefully read and thoroughly understand the manual for your EFI system before you go any further. The manual and wiring diagrams for the XFI 2.0 are built into their tuning software package. You can download that by clicking this link.

The following wiring diagram shows all of the connections between the FAST XFI 2.0 and the Infinitybox system.

Picture of a wiring diagram showing the connections between the FAST XFI 2.0 and the Infinitybox System.

Picture of a wiring diagram showing the connections between the FAST XFI 2.0 and the Infinitybox System.

Just like most other electrical systems in your car, the XFI 2.0 needs constant 12-volt power from the battery. This connection is the red wire going to cavity B18 in their harness. This wire must be connected directly to the positive terminal on your battery. It is also highly recommended that you have a fuse protecting this wire. The FAST manual recommends a 3-amp fuse in-line between the battery and the XFI 2.0 controller.

Next, you need to provide ignition power to the XFI controller. When your key is in the run position, the Infinitybox system will provide switched ignition power to the XFI controller so that it will control your engine. This ignition power will come from the ignition output from one of your POWERCELLs. Please check the configuration sheet that came with your specific kit to validate the POWERCELL output and wire color. Your POWERCELL output for ignition is going to connect to the Switched Ignition wire on the XFI harness. This is the pink wire going into cavity B17. There is no need to add a fuse to protect this wire since the fuse for it is built into the POWERCELL.

The FAST XFI 2.0 system is smart enough to signal for the cooling fan and fuel pump when it senses that it needs them. You can connect these signals to your Infinitybox MASTERCELL so that your POWERCELLs will control your cooling fans and fuel pump directly. Wiring it this way saves you in the amount of wire you need to run and also eliminates the need for extra relays. Our POWERCELLs have the solid-state relays built into them.

The FAST XFI 2.0 is set up to ground trigger relays for the cooling fan and fuel pump. This is ideal because the MASTERCELL inputs work on ground triggers. We still highly recommend installing diodes between the MASTERCELL and the XFI controller to buffer your Infinitybox system from any stray voltage that could be on the cooling fan and fuel pump triggers. We recommend a 1N4001 diode. These can be purchased from Amazon. The orientation of the diode is very important. If they are installed backwards, the triggers will not work. Please see the orientation in the wiring diagram above. The anode side of the diode should be connected to the MASTERCELL input. The cathode should be connected to the trigger wire on the XFI 2.0 controller.

Your MASTERCELL input wire for the cooling fan will connect to the Fan Control Output wire on the FAST harness. This is the black wire at cavity B10. The 1N4001 wire should be installed per our wiring diagram.

Your MASTERCELL input for the fuel pump trigger will connect to the Fuel Pump Control Output on the FAST harness. This is the black wire at cavity B5 on the FAST harness. Just like the cooling fan input, the diode should be wired per our wiring diagram.

Once you have made these connections to the FAST XFI 2.0 system, follow the manual that came with your 20-Circuit Kit to make the rest of the connections to your ignition switch, starter solenoid, cooling fan and fuel pump.

As you can see, our Infinitybox 20-Circuit is a versatile and power wiring harness system. We can easily interface with any electrical component in your car or truck build. You can download a PDF of this wiring diagram by clicking this link.

Click on this link to get in touch with our technical support team to answer any additional questions about wiring your FAST XFI 2.0 electronic fuel injection system.

Picture of keyed ignition & starter switch

Wiring an Ignition Switch

We’ve been helping guys wire their cars for over 10 years. Sometimes we find ourselves skipping over the basics of how our Infinitybox system works and the advantages that it has over traditional wiring harnesses. A customer called us today with questions about wiring an ignition switch to his MASTERCELL. We were surprised to see that we didn’t have a good wiring diagram nor blog post talking about this. This post will correct that.

The MASTERCELL inputs on an Infinitybox system work by getting connected to ground instead of connecting to battery voltage. This has a bunch of advantages over a traditional wiring harness.

First, the MASTERCELL inputs are just triggers to the system. All of the current is carried by the POWERCELLs. Very little current is required at the MASTERCELL. This means that you can use practically any switch to turn on an input to the MASTERCELL.

Second, since practically no current is required at the switch, the MASTERCELL input wires can be very thin. Our standard input harnesses use 22-AWG wire. This keeps the bulk of the harnessing behind your dash to a minimum.

Lastly, you can easily combine MASTERCELL inputs to a single switch to get more advanced functions without having to change anything in the software.

Click on this link to learn more about how the MASTERCELL inputs work.

The ignition switch on your car is probably the most important thing. It lets you start and stop the engine. Most ignition switches work the same way. They all have terminals for power, ignition and starter. Some have an additional terminal for powering accessories. This wiring diagram shows how to connect your MASTERCELL inputs to a typical ignition switch.

Image of wiring diagram showing how to wire an ignition switch with the Infinitybox system.

Image of wiring diagram showing how to wire an ignition switch with the Infinitybox system.

As mentioned above, the MASTERCELL inputs work by getting connected to ground. To do this, you are going essentially wire the switch backwards. Instead of connecting the switch to power, you are going to connect it to ground. The first thing to do is connect the battery terminal on the switch to ground. Most switches label this terminal as BAT. Others will label this terminal as B+ or +12V. Look closely at the labels near the terminals to identify the battery terminal. You can either ground this terminal directly to the chassis or you can use one of the black ground wires that is included in the MASTERCELL inputs harness. This ground connection is critical. See our previous posts about how to get good ground connections.

Next, you need to connect the MASTERCELL inputs to the terminals for Ignition and Starter. When the key is in the Ignition position, you need to have power for all of things that run your engine. These include your engine management system, your coils, your gauges and your dash. These are all powered from the Ignition output on your POWERCELL. There is a corresponding MASTERCELL input that turns on this output. Check your configuration sheet to identify these wire colors. Once you know the MASTERCELL input for your Ignition, connect that to the Ignition terminal on the switch. This terminal may be marked as IGN. It could also be marked as RUN. There is an easy way to identify the correct terminal for the Ignition. Turn the key to the Ignition or Run position and measure continuity between the BAT terminal and the IGN terminal. You should have continuity in the run position. It should be open circuit when the key is off.

For the starter input, check your configuration sheet to identify the wire color for the starter. Connect this wire to the ST terminal on your switch.

Lastly, some switches may have an Accessory position on them. This terminal lets you control outputs independently from the ignition. For example, some customers want to be able to power their stereo separately from the ignition so they may listen to music without running their EFI system. The Accessory wires the same way as the ignition and starter. Simply choose an OPEN auxiliary output from your configuration sheet ans connect the corresponding MASTERCELL input to the ACC terminal on the switch. Note that most accessory positions on ignition switches are on in the ACC and IGN positions but off in the START position.

You can download a PDF version of our wiring diagram showing how to wire an ignition switch by clicking this link.

Click this link to contact our technical support team with any additional questions about wiring your car or truck with our Infinitybox system.